Generalized weak peripheral multiplicativity in algebras of Lipschitz functions

被引:9
|
作者
Jimenez-Vargas, Antonio [1 ]
Lee, Kristopher [2 ]
Luttman, Aaron [3 ]
Villegas-Vallecillos, Moises [4 ]
机构
[1] Univ Almeria, Dept Algebra & Anal Matemat, Almeria 04120, Spain
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Natl Secur Technol LLC, Math & Software Dev, Las Vegas, NV 89193 USA
[4] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 07期
关键词
Lipschitz algebra; Peripheral multiplicativity; Spectral preservers; COMMUTATIVE BANACH-ALGEBRAS; UNIFORM ALGEBRAS; ISOMORPHISMS; SURJECTIONS; SPECTRUM; MAPS;
D O I
10.2478/s11533-013-0243-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d(X)) and (Y, d(Y)) be pointed compact metric spaces with distinguished base points e(X) and e(Y). The Banach algebra of all K-valued Lipschitz functions on X - where K is either C or R - that map the base point e(X) to 0 is denoted by Lip(0)(X). The peripheral range of a function f is an element of Lip(0)(X) is the set Ran(pi)(f) = {f(x) : vertical bar f(x)vertical bar = parallel to f parallel to(infinity)} of range values of maximum modulus. We prove that if T-1, T-2 : Lip(0)(X) -> Lip(0)(Y) and S-1, S-2 : Lip(0)(X) -> Lip(0)(X) are surjective mappings such that Ran(pi)(T-1(f) T-2(g)) boolean AND Ran(pi)(S-1(f) S-2(g)) not equal empty set for all f, g is an element of Lip(0)(X), then there are mappings phi(1), phi(2) : Y -> K with phi(1)(y)phi(2)(y) = 1 for all y is an element of Y and a base point-preserving Lipschitz homeomorphism psi : Y -> X such that T-j(f)(y) = phi(j)(y) S-j(f)(psi(y)) for all f is an element of Lip(0)(X), y is an element of Y, and j = 1, 2. In particular, if S-1 and S-2 are identity functions, then T-1 and T-2 are weighted composition operators.
引用
收藏
页码:1197 / 1211
页数:15
相关论文
共 50 条
  • [1] Boundaries of weak peak points in noncommutative algebras of Lipschitz functions
    Averill, Kassandra
    Johnston, Ann
    Northrup, Ryan
    Silversmith, Robert
    Luttman, Aaron
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (02): : 646 - 655
  • [2] GENERALIZED LIPSCHITZ ALGEBRAS
    BISHOP, ER
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (01): : 1 - &
  • [3] ALGEBRAS OF DIFFERENTIABLE FUNCTIONS AND ALGEBRAS OF LIPSCHITZ FUNCTIONS
    PRASAD, PK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (04): : 376 - 382
  • [4] Generalized Lipschitz functions
    Jouini, E
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) : 371 - 382
  • [5] Generalized Lipschitz Functions
    Javad Mashreghi
    Computational Methods and Function Theory, 2006, 5 (2) : 431 - 444
  • [6] Homomorphisms on algebras of Lipschitz functions
    Botelho, Fernanda
    Jamison, James
    STUDIA MATHEMATICA, 2010, 199 (01) : 95 - 106
  • [7] BANACH ALGEBRAS OF LIPSCHITZ FUNCTIONS
    SHERBERT, DR
    PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (04) : 1387 - &
  • [8] AMENABILITY AND WEAK AMENABILITY FOR BEURLING AND LIPSCHITZ ALGEBRAS
    BADE, WG
    CURTIS, PC
    DALES, HG
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1987, 55 : 359 - 377
  • [9] Lipschitz functions on Hermitian Banach *-algebras
    Kissin, Edward
    Shulman, Victor
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 215 - 239
  • [10] On the weak∗ separability of the space of Lipschitz functions
    Candido, Leandro
    Cuth, Marek
    Vejnar, Benjamin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (01)