ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS

被引:39
作者
Chen, Qionglei [1 ]
Miao, Changxing [1 ]
Zhang, Zhifei [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
shallow water equations; well-posedness; Bony's paraproduct decomposition; weight Besov space;
D O I
10.1137/060660552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of the solutions for the two-dimensional viscous shallow water equations with low regularity assumptions on the initial data as well as the initial height bounded away from zero.
引用
收藏
页码:443 / 474
页数:32
相关论文
共 23 条
[1]   TRANSPORT-EQUATIONS RELATIVE TO NON-LIPSCHITZ VECTOR-FIELDS AND FLUID-MECHANICS [J].
BAHOURI, H ;
CHEMIN, JY .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :159-181
[2]   Quasilinear wave equations and Strichartz estimations [J].
Bahouri, H ;
Chemin, JY .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (06) :1337-1377
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
BRESCH D, RECENT MATH RESULTS
[5]  
BUI AT, 1981, SIAM J MATH ANAL, V12, P229
[6]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[7]  
Cannone M., 1995, ONDELETTES PARAPRODU
[8]  
Chemin J.-Y., 1998, Perfect Incompressible Fluids
[9]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[10]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256