GLOBAL DYNAMICS IN THE POINCARE BALL OF THE CHEN SYSTEM HAVING INVARIANT ALGEBRAIC SURFACES

被引:16
作者
Llibre, Jaume [2 ]
Messias, Marcelo [1 ]
Da Silva, Paulo Ricardo [3 ]
机构
[1] Univ Estadual Paulista, UNESP, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 Sao Paulo, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Univ Estadual Paulista, UNESP, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Paulo, Brazil
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
Chen system; integrability; Poincare compactification; dynamics at infinity; heteroclinic orbits; singularly degenerate heteroclinic cycles; invariant manifolds; LORENZ SYSTEM;
D O I
10.1142/S0218127412501544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we perform a global analysis of the dynamics of the Chen system (x) over dot = a(y - x), (y) over dot = (c - a)x - xz + cy, (z) over dot = xy - bz, where (x, y, z) is an element of R-3 and (a, b, c) is an element of R-3. We give the complete description of its dynamics on the sphere at infinity. For six sets of the parameter values, the system has invariant algebraic surfaces. In these cases, we provide the global phase portrait of the Chen system and give a complete description of the alpha- and omega-limit sets of its orbits in the Poincare ball, including its boundary S-2, i.e. in the compactification of R-3 with the sphere S-2 of infinity. Moreover, combining the analytical results obtained with an accurate numerical analysis, we prove the existence of a family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen system has a line of singularities and a first integral, which indicates the complicated dynamical behavior of the Chen system solutions even in the absence of chaotic dynamics.
引用
收藏
页数:17
相关论文
共 16 条
[1]   Periodic orbits for a class of reversible quadratic vector field on R3 [J].
Buzzi, Claudio A. ;
Llibre, Jaume ;
Medrado, Joao C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1335-1346
[2]   THE CHEN SYSTEM HAVING AN INVARIANT ALGEBRAIC SURFACE [J].
Cao, Jinlong ;
Chen, Cheng ;
Zhang, Xiang .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12) :3753-3758
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   BOUNDED POLYNOMIAL VECTOR-FIELDS [J].
CIMA, A ;
LLIBRE, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :557-580
[5]   Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I [J].
Hiroshi Kokubu ;
Robert Roussarie .
Journal of Dynamics and Differential Equations, 2004, 16 (2) :513-557
[6]  
Llibre J., 2011, INT J BIFURCATION CH
[7]   GLOBAL DYNAMICS OF THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES [J].
Llibre, Jaume ;
Messias, Marcelo ;
Da Silva, Paulo Ricardo .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10) :3137-3155
[8]   On the global dynamics of the Rabinovich system [J].
Llibre, Jaume ;
Messias, Marcelo ;
da Silva, Paulo R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (27)
[9]   Global dynamics of the Rikitake system [J].
Llibre, Jaume ;
Messias, Marcelo .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :241-252
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO