HOMOMORPHISMS OF VECTOR BUNDLES ON CURVES AND PARABOLIC VECTOR BUNDLES ON A SYMMETRIC PRODUCT

被引:0
作者
Biswas, Indranil [1 ]
Majumder, Souradeep [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Symmetric product; parabolic vector bundle; homomorphism; stability; MODULI;
D O I
10.1090/S0002-9939-2012-11227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S-n(X) be the symmetric product of an irreducible smooth complex projective curve X. Given a vector bundle E on X, there is a corresponding parabolic vector bundle V-E* on S-n(X). If E is nontrivial, it is known that V-E* is stable if and only if E is stable. We prove that H-0 (S-n (X), Hom(par)(V-E*, V-F*)) = H-0(X, F circle plus E-v)circle plus(H-0(X, F)circle plus H-0 (X, E-v)). As a consequence, the map from a moduli space of vector bundles on X to the corresponding moduli space of parabolic vector bundles on S-n(X) is injective.
引用
收藏
页码:3017 / 3024
页数:8
相关论文
共 4 条