Emerging optical spectroscopy techniques for biomedical applications-A brief review of recent progress

被引:21
作者
Ahn, Heesang [1 ]
Song, Hyerin [1 ]
Shin, Dong-Myeong [2 ]
Kim, Kyujung [1 ]
Choi, Jong-ryul [3 ]
机构
[1] Pusan Natl Univ, Dept Cognomechatron Engn, Busan, South Korea
[2] Pusan Natl Univ, Res Ctr Energy Convergence Technol, Busan, South Korea
[3] DGMIF, Med Device Dev Ctr, Daegu 41061, South Korea
基金
新加坡国家研究基金会;
关键词
Optical spectroscopy; biomedical diagnosis; preclinical in vitro diagnosis; non-invasive early stage diagnosis; spectroscopy-integrated endoscopes; SURFACE-PLASMON RESONANCE; NEAR-INFRARED SPECTROSCOPY; CARDIAC TROPONIN-I; ENHANCED RAMAN-SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; BARRETTS-ESOPHAGUS; FLUORESCENCE SPECTROSCOPY; MEDICAL DIAGNOSTICS; HUMAN SKIN; SCATTERING;
D O I
10.1080/05704928.2017.1324877
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Optical measurement methods are widely employed in both industrial and medical fields for two reasons: (1) they are non-invasive and (2) they have a high resolution. Among the various optical methods currently available, those based on spectroscopy are actively employed to monitor multiple factors using spectral information. In this review article, three categories of optical spectroscopic methods for biomedical diagnosis are discussed: (1) in vitro preclinical diagnosis using optical spectroscopy, (2) non-invasive early-stage diagnosis based on optical spectroscopy at the surface of the skin and (3) minimally-invasive diagnosis using spectroscopy-integrated endoscopies. We also highlight the advances in nanomaterials, molecular probes, and photonic system constructions that have led to improvements in the sensitivity, diagnostic speed, and capability to analyze multiple medical parameters. Additionally, we briefly discuss the future prospects of these spectroscopic applications and the combination of optical techniques with information technology.
引用
收藏
页码:264 / 278
页数:15
相关论文
共 110 条
[1]  
Abdalsalam O. S., 2014, AM J BIOMED ENG, V4, P53
[2]   Quantitative online detection of low-concentrated drugs via a SERS microfluidic system [J].
Ackermann, Katrin R. ;
Henkel, Thomas ;
Popp, Juergen .
CHEMPHYSCHEM, 2007, 8 (18) :2665-2670
[3]   DIAGNOSIS OF PERIOPERATIVE MYOCARDIAL-INFARCTION WITH MEASUREMENT OF CARDIAC TROPONIN-I [J].
ADAMS, JE ;
SICARD, GA ;
ALLEN, BT ;
BRIDWELL, KH ;
LENKE, LG ;
DAVILAROMAN, VG ;
BODOR, GS ;
LADENSON, JH ;
JAFFE, AS .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 330 (10) :670-674
[4]   Virus detection and quantification using electrical parameters [J].
Al Ahmad, Mahmoud ;
Mustafa, Farah ;
Ali, Lizna M. ;
Rizvi, Tahir A. .
SCIENTIFIC REPORTS, 2014, 4
[5]   Fluorescent Non-peptidic RGD Mimetics with High Selectivity for αVβ3 vs αIIbβ3 Integrin Receptor: Novel Probes for in Vivo Optical Imaging [J].
Alsibai, Wael ;
Hahnenkamp, Anke ;
Eisenblaetter, Michel ;
Riemann, Burkhard ;
Schaefers, Michael ;
Bremer, Christoph ;
Haufe, Guenter ;
Hoeltke, Carsten .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (23) :9971-9982
[6]  
Amir Orna, 2007, J Diabetes Sci Technol, V1, P463
[7]   Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics [J].
Andreou, Chrysafis ;
Hoonejani, Mehran R. ;
Barmi, Meysam R. ;
Moskovits, Martin ;
Meinhart, Carl D. .
ACS NANO, 2013, 7 (08) :7157-7164
[8]   Non-contact skin moisture measurement based on near-infrared spectroscopy [J].
Arimoto, H ;
Egawa, M .
APPLIED SPECTROSCOPY, 2004, 58 (12) :1439-1446
[9]   RAYLEIGH AND RAMAN SCATTERING FROM OPTICALLY ACTIVE MOLECULES [J].
BARRON, LD ;
BUCKINGHAM, AD .
MOLECULAR PHYSICS, 1971, 20 (06) :1111-+
[10]   Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm [J].
Bashkatov, AN ;
Genina, EA ;
Kochubey, VI ;
Tuchin, VV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (15) :2543-2555