Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis

被引:17
|
作者
Feldkircher, Martin [1 ]
机构
[1] Oesterreich Natl Bank, A-1090 Vienna, Austria
关键词
forecast combination; Bayesian model averaging; median probability model; predictive likelihood; industrial production; model uncertainty; GROWTH;
D O I
10.1002/for.1228
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this study we evaluate the forecast performance of model-averaged forecasts based on the predictive likelihood carrying out a prior sensitivity analysis regarding Zellner's g prior. The main results are fourfold. First, the predictive likelihood does always better than the traditionally employed marginal likelihood in settings where the true model is not part of the model space. Secondly, forecast accuracy as measured by the root mean square error (RMSE) is maximized for the median probability model. On the other hand, model averaging excels in predicting direction of changes. Lastly, g should be set according to Laud and Ibrahim (1995: Predictive model selection. Journal of the Royal Statistical Society B 57: 247262) with a hold-out sample size of 25% to minimize the RMSE (median model) and 75% to optimize direction of change forecasts (model averaging). We finally apply the aforementioned recommendations to forecast the monthly industrial production output of six countries, beating for almost all countries the AR(1) benchmark model. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条
  • [31] A new approach for Bayesian model averaging
    XiangJun Tian
    ZhengHui Xie
    AiHui Wang
    XiaoChun Yang
    Science China Earth Sciences, 2012, 55 : 1336 - 1344
  • [32] Bayesian curve estimation by model averaging
    Peña, D
    Redondas, D
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (03) : 688 - 709
  • [33] Bayesian model averaging for multivariate extremes
    Sabourin, Anne
    Naveau, Philippe
    Fougeres, Anne-Laure
    EXTREMES, 2013, 16 (03) : 325 - 350
  • [34] Bayesian model averaging for multivariate extremes
    Anne Sabourin
    Philippe Naveau
    Anne-Laure Fougères
    Extremes, 2013, 16 : 325 - 350
  • [35] A new approach for Bayesian model averaging
    Tian XiangJun
    Xie ZhengHui
    Wang AiHui
    Yang XiaoChun
    SCIENCE CHINA-EARTH SCIENCES, 2012, 55 (08) : 1336 - 1344
  • [36] Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging
    Shou, Yiyun
    Smithson, Michael
    PSYCHOMETRIKA, 2015, 80 (01) : 236 - 256
  • [37] Research on Bayesian Model Averaging for Lasso based on Analysis of Scientific Materials
    Guo, Aotuo
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, CHEMISTRY AND BIOINFORMATICS, PTS 1 AND 2 (MECB 2011), 2011, 282-283 : 334 - 337
  • [38] Robust Bayesian model averaging for the analysis of presence-absence data
    Corani, Giorgio
    Mignatti, Andrea
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (03) : 513 - 534
  • [39] Improving Streamflow Prediction Using Uncertainty Analysis and Bayesian Model Averaging
    Meira Neto, Antonio A.
    Oliveira, Paulo Tarso S.
    Rodrigues, Dulce B. B.
    Wendland, Edson
    JOURNAL OF HYDROLOGIC ENGINEERING, 2018, 23 (05)
  • [40] A Bayesian model averaging method for the derivation of reservoir operating rules
    Zhang, Jingwen
    Liu, Pan
    Wang, Hao
    Lei, Xiaohui
    Zhou, Yanlai
    JOURNAL OF HYDROLOGY, 2015, 528 : 276 - 285