The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data

被引:122
作者
He, Yinnian [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
关键词
Navier-Stokes equations; mixed finite element; Euler implicit/explicit scheme; Smooth or non-smooth initial data;
D O I
10.1090/S0025-5718-08-02127-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the stability and convergence results for the Euler implicit/explicit scheme applied to the spatially discretized two-dimensional (2D) time-dependent Navier-Stokes equations. A Galerkin finite element spatial discretization is assumed, and the temporal treatment is implicit/explict scheme, which is implicit for the linear terms and explicit for the nonlinear term. Here the stability condition depends on the smoothness of the initial data u(0) is an element of H-alpha, i.e., the time step condition is tau <= C-0 in the case of alpha = 2, tau|log h| <= C-0 in the case of alpha = 1 and tau h(-2) = C-0 in the case of alpha = 0 for mesh size h and some positive constant C-0. We provide the H-2-stability of the scheme under the stability condition with alpha = 0, 1, 2 and obtain the optimal H-1 - L-2 error estimate of the numerical velocity and the optimal L-2 error estimate of the numerical pressure under the stability condition with alpha = 1, 2.
引用
收藏
页码:2097 / 2124
页数:28
相关论文
共 38 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   NONLINEAR GALERKIN METHODS AND MIXED FINITE-ELEMENTS - 2-GRID ALGORITHMS FOR THE NAVIER-STOKES EQUATIONS [J].
AMMI, AAO ;
MARION, M .
NUMERISCHE MATHEMATIK, 1994, 68 (02) :189-213
[3]  
[Anonymous], 1987, FINITE ELEMENT METHO
[4]  
Baker G.A., 1976, GALERKIN APPRO UNPUB
[5]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[6]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[7]   A PRIORI L2 ERROR-ESTIMATES FOR FINITE-ELEMENT METHODS FOR NONLINEAR DIFFUSION-EQUATIONS WITH MEMORY [J].
CANNON, JR ;
LIN, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :595-607
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Fairweather G., ORTHOGONAL SPL UNPUB
[10]  
He Y., 1996, NUMER METHODS PARTIA, V12, P283, DOI DOI 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO