High-accuracy scaling exponents in the local potential approximation

被引:44
作者
Bervillier, Claude [1 ]
Juettner, Andreas [2 ]
Litim, Daniel F. [3 ,4 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[4] CERN, Div Phys, Theory Grp, CH-1211 Geneva 23, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.nuclphysb.2007.03.036
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We test equivalences between different realisations of Wilson's renormalisation group by computing the leading, subleading, and anti-symmetric corrections-to-scaling exponents, and the full fixed point potential for the Ising universality class to leading order in a derivative expansion. We discuss our methods with a special emphasis on accuracy and reliability. We establish numerical equivalence of Wilson-Polchinski flows and optimised renormalisation group flows with an unprecedented accuracy in the scaling exponents. Our results are contrasted with high-accuracy findings from Dyson's hierarchical model, where a tiny but systematic difference in all scaling exponents is established. Further applications for our numerical methods are briefly indicated. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 47 条
  • [1] CRITICAL EXPONENTS WITHOUT THE EPSILON EXPANSION
    ALFORD, M
    [J]. PHYSICS LETTERS B, 1994, 336 (02) : 237 - 242
  • [2] Rapidly converging truncation scheme of the exact renormalization group
    Aoki, KI
    Morikawa, K
    Souma, W
    Sumi, JI
    Terao, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (03): : 451 - 466
  • [3] Exact renormalization group equations: an introductory review
    Bagnuls, C
    Bervillier, C
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2): : 91 - 157
  • [4] ISING-MODEL WITH A SCALING INTERACTION
    BAKER, GA
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (07): : 2622 - &
  • [5] SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP
    BALL, RD
    HAAGENSEN, PE
    LATORRE, JI
    MORENO, E
    [J]. PHYSICS LETTERS B, 1995, 347 (1-2) : 80 - 88
  • [6] Non-perturbative renormalization flow in quantum field theory and statistical physics
    Berges, J
    Tetradis, N
    Wetterich, C
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 223 - 386
  • [7] The Wilson-Polchinski exact renormalization group equation
    Bervillier, C
    [J]. PHYSICS LETTERS A, 2004, 332 (1-2) : 93 - 100
  • [8] Bervillier C., UNPUB
  • [9] Boisseau B., HEP TH 0611306
  • [10] Polchinski equation, reparameterization invariance and the derivative expansion
    Comellas, J
    [J]. NUCLEAR PHYSICS B, 1998, 509 (03) : 662 - 686