Wavelet feature space in computer-aided electroretinogram evaluation

被引:14
作者
Rogala, T [1 ]
Brykalski, A [1 ]
机构
[1] Tech Univ Szczecin, Fac Elect Engn, PL-70310 Szczecin, Poland
关键词
electroretinogram; PERG; wavelet transform; feature space; pre-processing;
D O I
10.1007/s10044-005-0003-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper discusses creating a wavelet-based feature space for the classification of transient pattern electroretinograms (PERGs)-signals utilized in ophthalmology to evaluate the state of the retina. Discrete wavelet transform (DWT) can provide compact signal description, which is more accurate than time-domain data. A procedure for the proper choice of transform parameters is proposed. Both time-domain and wavelet features of these waveforms are visualized using principal components analysis. Separability of feature spaces is compared using k-means clustering algorithm. The results suggest that PERG waveforms are better separable when represented by DWT coefficients of full time-domain signal, than in traditional peak-based feature space.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 14 条
  • [1] ALDROUBI A, 1996, WAVELETS MED BIOL
  • [2] [Anonymous], 1997, Time Frequency and Wavelets in Biomedical Signal Processing
  • [3] Standard for pattern electroretinography
    Bach M.
    Hawlina M.
    Holder G.E.
    Marmor M.F.
    Meigen T.
    Vaegan
    Miyake Y.
    [J]. Documenta Ophthalmologica, 2000, 101 (1) : 11 - 18
  • [4] Duda R. O., 2000, PATTERN CLASSIFICATI
  • [5] Classification of the myoelectric signal using time-frequency based representations
    Engelhart, K
    Hudgins, B
    Parker, PA
    Stevenson, M
    [J]. MEDICAL ENGINEERING & PHYSICS, 1999, 21 (6-7) : 431 - 438
  • [6] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    [J]. SIGNAL PROCESSING, 1997, 59 (01) : 61 - 72
  • [7] A neural-fuzzy classifier for recognition of power quality disturbances
    Huang, JS
    Negnevitsky, M
    Nguyen, DT
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2002, 17 (02) : 609 - 616
  • [8] Neural classification of lung sounds using wavelet coefficients
    Kandaswamy, A
    Kumar, CS
    Ramanathan, RP
    Jayaraman, S
    Malmurugan, N
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2004, 34 (06) : 523 - 537
  • [9] Induction motor fault diagnosis based on neuropredictors and wavelet signal processing
    Kim, K
    Parlos, AG
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2002, 7 (02) : 201 - 219
  • [10] Misti M., 2000, WAVELET TOOLBOX