Wavelet feature space in computer-aided electroretinogram evaluation

被引:14
作者
Rogala, T [1 ]
Brykalski, A [1 ]
机构
[1] Tech Univ Szczecin, Fac Elect Engn, PL-70310 Szczecin, Poland
关键词
electroretinogram; PERG; wavelet transform; feature space; pre-processing;
D O I
10.1007/s10044-005-0003-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper discusses creating a wavelet-based feature space for the classification of transient pattern electroretinograms (PERGs)-signals utilized in ophthalmology to evaluate the state of the retina. Discrete wavelet transform (DWT) can provide compact signal description, which is more accurate than time-domain data. A procedure for the proper choice of transform parameters is proposed. Both time-domain and wavelet features of these waveforms are visualized using principal components analysis. Separability of feature spaces is compared using k-means clustering algorithm. The results suggest that PERG waveforms are better separable when represented by DWT coefficients of full time-domain signal, than in traditional peak-based feature space.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 14 条
[1]  
ALDROUBI A, 1996, WAVELETS MED BIOL
[2]  
[Anonymous], 1997, Time Frequency and Wavelets in Biomedical Signal Processing
[3]   Standard for pattern electroretinography [J].
Bach M. ;
Hawlina M. ;
Holder G.E. ;
Marmor M.F. ;
Meigen T. ;
Vaegan ;
Miyake Y. .
Documenta Ophthalmologica, 2000, 101 (1) :11-18
[4]  
Duda R. O., 2000, PATTERN CLASSIFICATI
[5]   Classification of the myoelectric signal using time-frequency based representations [J].
Engelhart, K ;
Hudgins, B ;
Parker, PA ;
Stevenson, M .
MEDICAL ENGINEERING & PHYSICS, 1999, 21 (6-7) :431-438
[6]   Classification of EEG signals using the wavelet transform [J].
Hazarika, N ;
Chen, JZ ;
Tsoi, AC ;
Sergejew, A .
SIGNAL PROCESSING, 1997, 59 (01) :61-72
[7]   A neural-fuzzy classifier for recognition of power quality disturbances [J].
Huang, JS ;
Negnevitsky, M ;
Nguyen, DT .
IEEE TRANSACTIONS ON POWER DELIVERY, 2002, 17 (02) :609-616
[8]   Neural classification of lung sounds using wavelet coefficients [J].
Kandaswamy, A ;
Kumar, CS ;
Ramanathan, RP ;
Jayaraman, S ;
Malmurugan, N .
COMPUTERS IN BIOLOGY AND MEDICINE, 2004, 34 (06) :523-537
[9]   Induction motor fault diagnosis based on neuropredictors and wavelet signal processing [J].
Kim, K ;
Parlos, AG .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2002, 7 (02) :201-219
[10]  
Misti M., 2000, WAVELET TOOLBOX