Sparse Logistic Regression with Logical Features

被引:3
作者
Zou, Yuan [1 ]
Roos, Teemu [1 ]
机构
[1] Helsinki Inst Informat Technol, Gustaf Hallstromin Katu 2b, Helsinki 00014, Finland
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT I | 2016年 / 9651卷
关键词
Feature selection; Logistic regression; Lasso; GROUP LASSO; SELECTION;
D O I
10.1007/978-3-319-31753-3_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modeling interactions in regression models poses both computational as well as statistical challenges: the computational resources and the amount of data required to solve them increases sharply with the size of the problem. We focus on logistic regression with categorical variables and propose a method for learning dependencies that are expressed as general Boolean formulas. The computational and statistical challenges are solved by applying a technique called transformed Lasso, which involves a matrix transformation of the original covariates. We compare the method to an earlier related method, LogicReg, and show that our method scales better in terms of the number of covariates as well as the order and complexity of the interactions.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 16 条
[1]   A LASSO FOR HIERARCHICAL INTERACTIONS [J].
Bien, Jacob ;
Taylor, Jonathan ;
Tibshirani, Robert .
ANNALS OF STATISTICS, 2013, 41 (03) :1111-1141
[2]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[3]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[4]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[5]  
Hastie T., 2009, ELEMENTS STAT LEARNI, V2, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]
[6]   Regulatory motif finding by logic regression [J].
Keles, S ;
van der Laan, MJ ;
Vulpe, C .
BIOINFORMATICS, 2004, 20 (16) :2799-2811
[7]   TREE-GUIDED GROUP LASSO FOR MULTI-RESPONSE REGRESSION WITH STRUCTURED SPARSITY, WITH AN APPLICATION TO EQTL MAPPING [J].
Kim, Seyoung ;
Xing, Eric P. .
ANNALS OF APPLIED STATISTICS, 2012, 6 (03) :1095-1117
[8]   The group lasso for logistic regression [J].
Meier, Lukas ;
van de Geer, Sara A. ;
Buhlmann, Peter .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :53-71
[9]  
Roos Teemu, 2009, 2009 Information Theory and Applications Workshop (ITA), P290, DOI 10.1109/ITA.2009.5044959
[10]   Logic regression [J].
Ruczinski, I ;
Kooperberg, C ;
LeBlanc, M .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (03) :475-511