Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

被引:65
作者
Guo, L. [1 ]
Turner, A. G. [1 ,2 ]
Highwood, E. J. [1 ]
机构
[1] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
[2] Univ Reading, Dept Meteorol, NCAS Climate, Reading RG6 6BB, Berks, England
关键词
SUMMER MONSOON; ANTHROPOGENIC AEROSOLS; NORTHERN-HEMISPHERE; CLIMATE; PRECIPITATION; RAINFALL; VARIABILITY; TRENDS; REGION; INDIA;
D O I
10.5194/acp-15-6367-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also plays a role in declining monsoon rainfall. The disparity between the response of monsoon rainfall to increasing aerosol emissions in models containing direct aerosol effects only and those also containing indirect effects needs to be urgently investigated since the suggested future decline in Asian anthropogenic aerosol emissions inherent to the representative concentration pathways (RCPs) used for future climate projection may turn out to be optimistic. In addition, both groups of models show declining rainfall over China, also relating to local aerosol mechanisms. We hypothesize that aerosol emissions over China are large enough, in the CMIP5 models, to cause declining monsoon rainfall even in the absence of indirect aerosol effects. The same is not true for India.
引用
收藏
页码:6367 / 6378
页数:12
相关论文
共 44 条
[1]   Seasonal variability in aerosol optical depth over India: a spatio-temporal analysis using the MODIS aerosol product [J].
Acharya, Prasenjit ;
Sreekesh, S. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (13) :4832-4849
[2]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[3]  
[Anonymous], GEWEX NEWS
[4]  
[Anonymous], 1995, STAT METHODS ATMOSPH
[5]   Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon [J].
Bollasina, Massimo A. ;
Ming, Yi ;
Ramaswamy, V. .
SCIENCE, 2011, 334 (6055) :502-505
[6]   CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS [J].
CHARLSON, RJ ;
SCHWARTZ, SE ;
HALES, JM ;
CESS, RD ;
COAKLEY, JA ;
HANSEN, JE ;
HOFMANN, DJ .
SCIENCE, 1992, 255 (5043) :423-430
[7]   GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India [J].
Cherian, Ribu ;
Venkataraman, C. ;
Quaas, J. ;
Ramachandran, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (07) :2938-2955
[8]   Changes in the characteristics of rain events in India [J].
Dash, S. K. ;
Kulkarni, Makarand A. ;
Mohanty, U. C. ;
Prasad, K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[9]   Aerosol-cloud-precipitation interactions: A challenging problem in regional environment and climate research [J].
Devara, P. C. S. ;
Manoj, M. G. .
PARTICUOLOGY, 2013, 11 (01) :25-33
[10]   Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences [J].
Ding, Yihui ;
Wang, Zunya ;
Sun, Ying .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2008, 28 (09) :1139-1161