Torsion groups of elliptic curves over quadratic fields

被引:24
作者
Kamienny, Sheldon [1 ]
Najman, Filip [2 ,3 ]
机构
[1] Univ So Calif, Dept Math, 3620 S Vermont Ave, Los Angeles, CA 90089 USA
[2] Math Inst, NL-2300 RA Leiden, Netherlands
[3] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
torsion group; elliptic curves; quadratic fields; MODULAR L-FUNCTIONS; NUMBER-FIELDS; POINTS; TWISTS;
D O I
10.4064/aa152-3-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:291 / 305
页数:15
相关论文
共 18 条
[1]   EQUATIONS FOR THE MODULAR CURVE X1(N) AND MODELS OF ELLIPTIC CURVES WITH TORSION POINTS [J].
Baaziz, Houria .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2371-2386
[2]  
Dujella A., INFINITE FAMILIES EL
[3]   ON J1(P) AND THE CONJECTURE OF BIRCH AND SWINNERTON DYER [J].
KAMIENNY, S .
DUKE MATHEMATICAL JOURNAL, 1982, 49 (02) :329-340
[4]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[5]   TORSION POINTS ON ELLIPTIC-CURVES DEFINED OVER QUADRATIC FIELDS [J].
KENKU, MA ;
MOMOSE, F .
NAGOYA MATHEMATICAL JOURNAL, 1988, 109 :125-149
[6]   RATIONAL POINTS OF ABELIAN VARIETIES WITH VALUES IN TOWERS OF NUMBER FIELDS [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1972, 18 (3-4) :183-266
[7]   RATIONAL ISOGENIES OF PRIME DEGREE [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1978, 44 (02) :129-162
[8]  
Najmam F., 2011, Math J. Okayama U., V53, P75
[9]   Complete classification of torsion of elliptic curves over quadratic cyclotomic fields [J].
Najman, Filip .
JOURNAL OF NUMBER THEORY, 2010, 130 (09) :1964-1968
[10]   Non-vanishing of quadratic twists of modular L-functions [J].
Ono, K ;
Skinner, C .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :651-660