Examples of atmospheric characterization using hyperspectral data in the VNIR, SWIR and MWIR

被引:0
作者
Burke, HHK [1 ]
Griffin, MK [1 ]
Snow, JW [1 ]
Upham, CA [1 ]
Richard, CM [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
来源
ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII | 2001年 / 4381卷
关键词
HSI; atmospheric characterization; algorithms; AVIRIS; ARES; aerosols; water vapor; clouds;
D O I
10.1117/12.437023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A conventional approach to HSI processing and exploitation has been to first perform atmospheric compensation so that surface features can be properly characterized. In this paper, the application of visible and IR spectral information to atmospheric characterization is discussed and illustrated with hyperspectral data in the VNIR, SWIR and MWIR data. AVIRIS and ARES data are utilized. The Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) sensor contains 224 bands, each with a spectral bandwidth of approximately 10 mn, allowing it to cover the entire range between 4 and 2.5 mum. For a NASA ER-2 flight altitude of 20 km, each pixel is 20 m in size, yielding a ground swath width of approximately 10 km. The Airborne Remote Earth Sensing (ARES) sensor was flown on a NASA WB-57 aircraft operated from approximately 15 km altitude. Spectral radiance data from 2.0 to 6.0 mum in 75 contiguous bands were collected. Pixel resolution is approximately 17 by 4.5 m(2) with a swath width of 800 m. Examples of data applications include atmospheric water vapor retrieval, aerosol characterization, delineation of natural and manmade clouds/plumes, and cloud depiction. It is illustrated that though each application may only require a few spectral bands, the ultimate strength of HSI exploitation lies in the simultaneous and adaptive retrievals of atmospheric and surface features. Inter-relationships among different bands are also demonstrated and these are the physical basis for the optimal exploitation of spectral information.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
[31]   Simulation of hyperspectral image with existing Sentinel and AVIRIS data using distance functions [J].
Peddinti V.S.S. ;
Mandla V.R. ;
Mesapam S. ;
Kancherla S. .
Arabian Journal of Geosciences, 2021, 14 (17)
[32]   ATMOSPHERIC CORRECTION OF MULTI-ANGLE CRISM/MRO HYPERSPECTRAL DATA: RETRIEVAL OF AEROSOL OPTICAL THICKNESS AND SURFACE REFLECTANCE [J].
Ceamanos, Xavier ;
Doute, Sylvain ;
Lyapustin, Alexei .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :4168-4171
[33]   Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data [J].
Yoshida, Y. ;
Kikuchi, N. ;
Morino, I. ;
Uchino, O. ;
Oshchepkov, S. ;
Bril, A. ;
Saeki, T. ;
Schutgens, N. ;
Toon, G. C. ;
Wunch, D. ;
Roehl, C. M. ;
Wennberg, P. O. ;
Griffith, D. W. T. ;
Deutscher, N. M. ;
Warneke, T. ;
Notholt, J. ;
Robinson, J. ;
Sherlock, V. ;
Connor, B. ;
Rettinger, M. ;
Sussmann, R. ;
Ahonen, P. ;
Heikkinen, P. ;
Kyro, E. ;
Mendonca, J. ;
Strong, K. ;
Hase, F. ;
Dohe, S. ;
Yokota, T. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (06) :1533-1547
[34]   Below-Cloud Atmospheric Correction of Airborne Hyperspectral Imagery Using Simultaneous Solar Spectral Irradiance Observations [J].
Wright, Logan A. ;
Kindel, Bruce C. ;
Pilewskie, Peter ;
Leisso, Nathan P. ;
Kampe, Thomas U. ;
Schmidt, K. Sebastian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02) :1392-1409
[35]   Using Machine Learning for Estimating Rice Chlorophyll Content from In Situ Hyperspectral Data [J].
An, Gangqiang ;
Xing, Minfeng ;
He, Binbin ;
Liao, Chunhua ;
Huang, Xiaodong ;
Shang, Jiali ;
Kang, Haiqi .
REMOTE SENSING, 2020, 12 (18)
[36]   Machine learning for cyanobacteria mapping on tropical urban reservoirs using PRISMA hyperspectral data [J].
Begliomini, Felipe N. ;
Barbosa, Claudio C. F. ;
Martins, Vitor S. ;
Novo, Evlyn M. L. M. ;
Paulino, Rejane S. ;
Maciel, Daniel A. ;
Lima, Thainara M. A. ;
O'Shea, Ryan E. ;
Pahlevan, Nima ;
Lamparelli, Marta C. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 :378-396
[37]   Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network [J].
Song, Huacui ;
Yang, Yuanwei ;
Gao, Xianjun ;
Zhang, Maqun ;
Li, Shaohua ;
Liu, Bo ;
Wang, Yanjun ;
Kou, Yuan .
REMOTE SENSING, 2023, 15 (11)
[38]   Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data [J].
Moses, Wesley J. ;
Gitelson, Anatoly A. ;
Perk, Richard L. ;
Gurlin, Daniela ;
Rundquist, Donald C. ;
Leavitt, Bryan C. ;
Barrow, Tadd M. ;
Brakhage, Paul .
WATER RESEARCH, 2012, 46 (04) :993-1004
[39]   Leaf water content estimation using top-of-canopy airborne hyperspectral data [J].
Raj, Rahul ;
Walker, Jeffrey P. ;
Vinod, Vishal ;
Pingale, Rohit ;
Naik, Balaji ;
Jagarlapudi, Adinarayana .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
[40]   Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features [J].
Chen, CM ;
Hepner, GF ;
Forster, RR .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2003, 58 (1-2) :19-30