Examples of atmospheric characterization using hyperspectral data in the VNIR, SWIR and MWIR

被引:0
作者
Burke, HHK [1 ]
Griffin, MK [1 ]
Snow, JW [1 ]
Upham, CA [1 ]
Richard, CM [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
来源
ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII | 2001年 / 4381卷
关键词
HSI; atmospheric characterization; algorithms; AVIRIS; ARES; aerosols; water vapor; clouds;
D O I
10.1117/12.437023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A conventional approach to HSI processing and exploitation has been to first perform atmospheric compensation so that surface features can be properly characterized. In this paper, the application of visible and IR spectral information to atmospheric characterization is discussed and illustrated with hyperspectral data in the VNIR, SWIR and MWIR data. AVIRIS and ARES data are utilized. The Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) sensor contains 224 bands, each with a spectral bandwidth of approximately 10 mn, allowing it to cover the entire range between 4 and 2.5 mum. For a NASA ER-2 flight altitude of 20 km, each pixel is 20 m in size, yielding a ground swath width of approximately 10 km. The Airborne Remote Earth Sensing (ARES) sensor was flown on a NASA WB-57 aircraft operated from approximately 15 km altitude. Spectral radiance data from 2.0 to 6.0 mum in 75 contiguous bands were collected. Pixel resolution is approximately 17 by 4.5 m(2) with a swath width of 800 m. Examples of data applications include atmospheric water vapor retrieval, aerosol characterization, delineation of natural and manmade clouds/plumes, and cloud depiction. It is illustrated that though each application may only require a few spectral bands, the ultimate strength of HSI exploitation lies in the simultaneous and adaptive retrievals of atmospheric and surface features. Inter-relationships among different bands are also demonstrated and these are the physical basis for the optimal exploitation of spectral information.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
[11]   Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry-Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data [J].
Kruse, Fred A. ;
Taranik, James V. ;
Coolbaugh, Mark ;
Michaels, Joshua ;
Littlefield, Elizabeth F. ;
Calvin, Wendy M. ;
Martini, Brigette A. .
REMOTE SENSING, 2011, 3 (08) :1584-1602
[12]   Transforming Spreadsheet Data Types using Examples [J].
Singh, Rishabh ;
Gulwani, Sumit .
ACM SIGPLAN NOTICES, 2016, 51 (01) :343-356
[13]   FIDEX: Filtering Spreadsheet Data using Examples [J].
Wang, Xinyu ;
Gulwani, Sumit ;
Singh, Rishabh .
ACM SIGPLAN NOTICES, 2016, 51 (10) :195-213
[14]   Multivariable Characterization of Atmospheric Environment with Data Collected in Flight [J].
Shakirova, Aliia ;
Nichman, Leonid ;
Belacel, Nabil ;
Nguyen, Cuong ;
Bliankinshtein, Natalia ;
Wolde, Mengistu ;
DiVito, Stephanie ;
Bernstein, Ben ;
Huang, Yi .
ATMOSPHERE, 2022, 13 (10)
[15]   Unmixing hyperspectral data by using signal subspace sampling [J].
Spiegelberg, Jakob ;
Muto, Shunsuke ;
Ohtsuka, Masahiro ;
Pelckmans, Kristiaan ;
Rusz, Jan .
ULTRAMICROSCOPY, 2017, 182 :205-211
[16]   Daytime fire detection using airborne hyperspectral data [J].
Dennison, Philip E. ;
Roberts, Dar A. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) :1646-1657
[17]   Estimates of forest canopy fuel attributes using hyperspectral data [J].
Ha, Gensuo J. ;
Burke, Ingrid C. ;
Kaufmann, Merrill R. ;
Goetz, Alexander F. H. ;
Kindel, Bruce C. ;
Pu, Yifen .
FOREST ECOLOGY AND MANAGEMENT, 2006, 229 (1-3) :27-38
[18]   Vegetation Water Content Estimation Using Hyperion Hyperspectral Data [J].
Yuan, Jinguo ;
Sun, Kaijun ;
Niu, Zheng .
2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
[19]   Identification and mapping of night lights signatures using hyperspectral data [J].
Kruse, Fred A. ;
Elvidge, Christopher D. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
[20]   An assessment of effects of various parameters on target detection using hyperspectral Data [J].
Yadav, Deepti ;
Arora, M. K. ;
Tiwari, K. C. ;
Ghosh, J. K. .
MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880