The Hardy space H1 on non-homogeneous metric spaces
被引:73
作者:
Hytonen, Tuomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, FinlandBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Hytonen, Tuomas
[3
]
Yang, Dachun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Yang, Dachun
[1
]
Yang, Dongyong
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Yang, Dongyong
[2
]
机构:
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
Let (X, d, mu) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H-1(mu) and prove that its dual space is the known space RBMO(mu) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H-1(mu) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderon-Zygmund operators from H-1(mu) to L-1(mu).