The Hardy space H1 on non-homogeneous metric spaces

被引:73
作者
Hytonen, Tuomas [3 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
CALDERON-ZYGMUND OPERATORS; DOUBLING MEASURES; THEOREM;
D O I
10.1017/S0305004111000776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H-1(mu) and prove that its dual space is the known space RBMO(mu) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H-1(mu) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderon-Zygmund operators from H-1(mu) to L-1(mu).
引用
收藏
页码:9 / 31
页数:23
相关论文
共 19 条
[11]   On the H1-L1 boundedness of operators [J].
Meda, Stefano ;
Sjogren, Peter ;
Vallarino, Maria .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2921-2931
[12]   The Tb-theorem on non-homogeneous spaces [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
ACTA MATHEMATICA, 2003, 190 (02) :151-239
[13]   ON THE THEORY OF HARMONIC FUNCTIONS OF SEVERAL VARIABLES .1. THE THEORY OF HP-SPACES [J].
STEIN, EM ;
WEISS, G .
ACTA MATHEMATICA, 1960, 103 (1-2) :25-62
[14]   Painleve's problem and the semiadditivity of analytic capacity [J].
Tolsa, X .
ACTA MATHEMATICA, 2003, 190 (01) :105-149
[16]   BMO, H1, and Calderon-Zygmund operators for non doubling measures [J].
Tolsa, X .
MATHEMATISCHE ANNALEN, 2001, 319 (01) :89-149
[18]   Hausdorff dimension and doubling measures on metric spaces [J].
Wu, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) :1453-1459
[19]  
Yosida K., 1995, FUNCTION ANAL