The Hardy space H1 on non-homogeneous metric spaces

被引:73
作者
Hytonen, Tuomas [3 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
CALDERON-ZYGMUND OPERATORS; DOUBLING MEASURES; THEOREM;
D O I
10.1017/S0305004111000776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H-1(mu) and prove that its dual space is the known space RBMO(mu) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H-1(mu) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderon-Zygmund operators from H-1(mu) to L-1(mu).
引用
收藏
页码:9 / 31
页数:23
相关论文
共 19 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
[Anonymous], 1983, Lecture Notes in Math.
[3]   Calderon-Zygmund operators on Hardy spaces without the doubling condition [J].
Chen, W ;
Meng, Y ;
Yang, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) :2671-2680
[4]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[5]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[6]   New atomic characterization of H1 space with non-doubling measures and its applications [J].
Hu, G ;
Meng, Y ;
Yang, DC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :151-171
[7]   Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces [J].
Hytonen, Tuomas ;
Martikainen, Henri .
JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) :1071-1107
[8]   A FRAMEWORK FOR NON-HOMOGENEOUS ANALYSIS ON METRIC SPACES, AND THE RBMO SPACE OF TOLSA [J].
Hytonen, Tuomas .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :485-504
[9]   Atomic hardy-type spaces between H 1 and L 1 on metric spaces with non-doubling measures [J].
Liu, Li Guang ;
Yang, Da Chun ;
Yang, Dong Yong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (12) :2445-2468
[10]   Every complete doubling metric space carries a doubling measure [J].
Luukkainen, J ;
Saksman, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :531-534