Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene

被引:39
作者
Daniels, Kevin M. [1 ]
Jadidi, M. Mehdi [2 ]
Sushkov, Andrei B. [3 ]
Nath, Anindya [4 ]
Boyd, Anthony K. [1 ]
Sridhara, Karthik [5 ]
Drew, H. Dennis [3 ]
Murphy, Thomas E. [2 ]
Myers-Ward, Rachael L. [1 ]
Gaskill, D. Kurt [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
[4] George Mason Univ, 4400 Univ Dr, Fairfax, VA 22030 USA
[5] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77842 USA
基金
美国国家科学基金会;
关键词
graphene; terahertz; intercalation; metamaterial; plasmon; TERAHERTZ; BAND; TRANSISTORS;
D O I
10.1088/2053-1583/aa5c75
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exploiting the underdeveloped terahertz range (similar to 10(12)-10(13) Hz) of the electromagnetic spectrum could advance many scientific fields (e. g. medical imaging for the identification of tumors and other biological tissues, nondestructive evaluation of hidden objects or ultra-broadband communication). Despite the benefits of operating in this regime, generation, detection and manipulation have proven difficult, as few materials have functional interactions with THz radiation. In contrast, graphene supports resonances in the THz regime through structural confinement of surface plasmons, which can lead to enhanced absorption. In prior work, the achievable plasmon resonances in such structures have been limited by multiple electron scattering mechanisms (i. e. large carrier scattering rates) which greatly broaden the resonance (> 100 cm(-1); 3 THz). We report the narrowest room temperature Drude response to-date, 30 cm(-1) (0.87 THz), obtained using quasi-free standing bilayer epitaxial graphene (QFS BLG) synthesized on (0 0 0 1) 6H-SiC. This narrow response is due to a 4-fold increase in carrier mobility and improved thickness and electronic uniformity of QFS BLG. Moreover, QFS BLG samples patterned into microribbons targeting 1.8-5.7 THz plasmon resonances also exhibit low scattering rates (37-53 cm(-1)). Due to the improved THz properties of QFS BLG, the effects of e-beam processing on carrier scattering rates was determined and we found that fabrication conditions can be tuned to minimize the impact on optoelectronic properties. In addition, electrostatic gating of patterned QFS BLG shows narrow band THz amplitude modulation. Taken together, these properties of QFS BLG should facilitate future development of THz optoelectronic devices for monochromatic applications.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Terahertz band: Next frontier for wireless communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
PHYSICAL COMMUNICATION, 2014, 12 :16-32
[2]   Graphene: synthesis and applications [J].
Avouris, Phaedon ;
Dimitrakopoulos, Christos .
MATERIALS TODAY, 2012, 15 (03) :86-97
[3]   Intrinsic terahertz plasmon signatures in chemical vapour deposited graphene [J].
Badhwar, Shruti ;
Sibik, Juraj ;
Kidambi, Piran R. ;
Beere, Harvey E. ;
Zeitler, J. Axel ;
Hofmann, Stephan ;
Ritchie, David A. .
APPLIED PHYSICS LETTERS, 2013, 103 (12)
[4]   Electronic modulation of infrared radiation in graphene plasmonic resonators [J].
Brar, Victor W. ;
Sherrott, Michelle C. ;
Jang, Min Seok ;
Kim, Seyoon ;
Kim, Laura ;
Choi, Mansoo ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2015, 6
[5]   Plasmon-Enhanced Terahertz Photodetection in Graphene [J].
Cai, Xinghan ;
Sushkov, Andrei B. ;
Jadidi, Mohammad M. ;
Nyakiti, Luke ;
Myers-Ward, Rachael L. ;
Gaskill, D. Kurt ;
Murphy, Thomas E. ;
Fuhrer, Michael S. ;
Drew, H. Dennis .
NANO LETTERS, 2015, 15 (07) :4295-4302
[6]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[7]   Imaging with terahertz radiation [J].
Chan, Wai Lam ;
Deibel, Jason ;
Mittleman, Daniel M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) :1325-1379
[8]  
Choudhury B., 2016, Terahertz Antenna Technology for Space Applications, P1
[9]   Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene [J].
Crassee, I. ;
Orlita, M. ;
Potemski, M. ;
Walter, A. L. ;
Ostler, M. ;
Seyller, Th. ;
Gaponenko, I. ;
Chen, J. ;
Kuzmenko, A. B. .
NANO LETTERS, 2012, 12 (05) :2470-2474
[10]  
Cumpson PJ, 2000, SURF INTERFACE ANAL, V29, P403, DOI 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO