Sparse block circulant matrices for compressed sensing

被引:19
作者
Sun, Jingming [1 ]
Wang, Shu [1 ]
Dong, Yan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Elect & Informat Engn Dept, Wuhan 430074, Peoples R China
关键词
Gaussian processes; sparse matrices; compressed sensing; sparse block circulant matrices; matrix measurement; sparse signals; restricted isometry property; RIP; CS framework; SBCM; Gaussian random matrices; signal recovery; RECOVERY; RECONSTRUCTION;
D O I
10.1049/iet-com.2013.0030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An undetermined measurement matrix can capture sparse signals losslessly if the matrix satisfies the restricted isometry property (RIP) in compressed sensing (CS) framework. However, existing measurement matrices suffer from high computational burden because of their completely unstructured nature. In this study, the authors propose to construct a novel measurement matrix with a specific structure, called sparse block circulant matrix (SBCM), to reduce the computational burden. The RIP of the proposed SBCM is also guaranteed with overwhelming probability. The simulation results validate that SBCM reduces the computational burden significantly whereas keeps similar signal recovery accuracy as Gaussian random matrices.
引用
收藏
页码:1412 / 1418
页数:7
相关论文
共 27 条
[21]  
Nelson J., 2012, NEW CONSTRUCTIONS RI
[22]   Restricted isometries for partial random circulant matrices [J].
Rauhut, Holger ;
Romberg, Justin ;
Tropp, Joel A. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) :242-254
[23]   Sparse channel separation using random probes [J].
Romberg, Justin ;
Neelamani, Ramesh .
INVERSE PROBLEMS, 2010, 26 (11)
[24]   Compressive Sensing by Random Convolution [J].
Romberg, Justin .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04) :1098-1128
[25]  
Sebert F., 2008, TOEPLITZ BLOCK MATRI
[26]   PROBING THE PARETO FRONTIER FOR BASIS PURSUIT SOLUTIONS [J].
van den Berg, Ewout ;
Friedlander, Michael P. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02) :890-912
[27]  
Varga R.S., 2004, Springer Ser. Comput. Math., V36