Sparse block circulant matrices for compressed sensing

被引:19
作者
Sun, Jingming [1 ]
Wang, Shu [1 ]
Dong, Yan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Elect & Informat Engn Dept, Wuhan 430074, Peoples R China
关键词
Gaussian processes; sparse matrices; compressed sensing; sparse block circulant matrices; matrix measurement; sparse signals; restricted isometry property; RIP; CS framework; SBCM; Gaussian random matrices; signal recovery; RECOVERY; RECONSTRUCTION;
D O I
10.1049/iet-com.2013.0030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An undetermined measurement matrix can capture sparse signals losslessly if the matrix satisfies the restricted isometry property (RIP) in compressed sensing (CS) framework. However, existing measurement matrices suffer from high computational burden because of their completely unstructured nature. In this study, the authors propose to construct a novel measurement matrix with a specific structure, called sparse block circulant matrix (SBCM), to reduce the computational burden. The RIP of the proposed SBCM is also guaranteed with overwhelming probability. The simulation results validate that SBCM reduces the computational burden significantly whereas keeps similar signal recovery accuracy as Gaussian random matrices.
引用
收藏
页码:1412 / 1418
页数:7
相关论文
共 27 条
[1]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[2]   Bayesian Compressive Sensing Via Belief Propagation [J].
Baron, Dror ;
Sarvotham, Shriram ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (01) :269-280
[3]  
Berinde R., 2008, Sparse recovery using sparse randommatrices
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[6]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[7]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[8]  
Chandar V., 2008, NEGATIVE RESULT EXPL
[9]   Fast and Efficient Compressive Sensing Using Structurally Random Matrices [J].
Do, Thong T. ;
Gan, Lu ;
Nguyen, Nam H. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) :139-154
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306