Non-autonomous right and left multiplicative perturbations and maximal regularity

被引:9
作者
Achache, Mahdi [1 ]
Ouhabaz, El Maati [1 ]
机构
[1] Univ Bordeaux, CNR, UMR 5251, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
关键词
maximal regularity; non-autonomous evolution equations; multiplicative perturbations; ELLIPTIC-OPERATORS; FORMS;
D O I
10.4064/sm8721-6-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of maximal regularity for non-autonomous Cauchy problems u'(t) B(t)A(t)u(t) + P(t)u(t) = f(t), u(0) = u(o), and u'(t) A(t)B(t)u(t) + P(t)u(t) = f(t), u(0) = u(o). In both cases, the time dependent operators A(t) are associated with a family of sesquilinear forms, and the multiplicative left or right perturbations B(t) as well as the additive perturbation P(t) are families of bounded operators on the Hilbert space considered. We prove maximal L-p-regularity results and other regularity properties for the solutions of the previous problems under minimal regularity assumptions on the forms and perturbations.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 20 条
[1]  
[Anonymous], 2005, London Mathematical Society Monographs Series
[2]  
Arendt W., 2014, ARXIV14103063
[3]  
Arendt W, 2014, ADV DIFFERENTIAL EQU, V19, P1043
[4]   ON THE RIGHT MULTIPLICATIVE PERTURBATION OF NON-AUTONOMOUS Lp-MAXIMAL REGULARITY [J].
Augner, Bjoern ;
Jacob, Birgit ;
Laasri, Hafida .
JOURNAL OF OPERATOR THEORY, 2015, 74 (02) :391-415
[5]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[6]   On non-autonomous maximal regularity for elliptic operators in divergence form [J].
Auscher, Pascal ;
Egert, Moritz .
ARCHIV DER MATHEMATIK, 2016, 107 (03) :271-284
[7]  
Bardos C., 1971, J FUNCT ANAL, V7, P311, DOI DOI 10.1016/0022-1236(71)90038-3
[8]   Banach space operators with a bounded H infinity functional calculus [J].
Cowling, M ;
Doust, I ;
McIntosh, A ;
Yagi, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :51-89
[9]   CALDERON-ZYGMUND THEORY FOR OPERATOR-VALUED KERNELS [J].
DEFRANCIA, JLR ;
RUIZ, FJ ;
TORREA, JL .
ADVANCES IN MATHEMATICS, 1986, 62 (01) :7-48
[10]  
Dier D., 2014, THESIS