CENTRAL LIMIT THEOREMS FOR U-STATISTICS OF POISSON POINT PROCESSES

被引:69
作者
Reitzner, Matthias [1 ]
Schulte, Matthias [2 ]
机构
[1] Univ Osnabruck, Inst Math, D-49069 Osnabruck, Germany
[2] Karlsruhe Inst Technol, Inst Stochast, D-76133 Karlsruhe, Germany
关键词
Central limit theorem; Malliavin calculus; Poisson point process; Stein's method; U-statistic; Wiener-Ito chaos expansion; GAUSSIAN FLUCTUATIONS; WIENER; FUNCTIONALS; CUMULANTS;
D O I
10.1214/12-AOP817
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A U-statistic of a Poisson point process is defined as the sum Sigma f(x(1),...,x(k)) over all (possibly infinitely many) k-tuples of distinct points of the point process. Using the Malliavin calculus, the Wiener-Ito chaos expansion of such a functional is computed and used to derive a formula for the variance. Central limit theorems for U-statistics of Poisson point processes are shown, with explicit bounds for the Wasserstein distance to a Gaussian random variable. As applications, the intersection process of Poisson hyperplanes and the length of a random geometric graph are investigated.
引用
收藏
页码:3879 / 3909
页数:31
相关论文
共 38 条
[1]  
[Anonymous], STOCHASTIC IN PRESS
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], STOCHASTIC GEOMETRY
[4]  
[Anonymous], 2003, OXFORD STUDIES PROBA
[5]  
[Anonymous], 2006, MATHEMATIKA
[6]  
[Anonymous], EXACT ASYMPTOT UNPUB
[7]   A note on Sylvester's four-point problem [J].
Bárány, I .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 :73-77
[8]   Sylvester's question:: The probability that n points are in convex position [J].
Bárány, I .
ANNALS OF PROBABILITY, 1999, 27 (04) :2020-2034
[9]  
Chen L., 2005, INTRO STEINS METHOD
[10]   SYMMETRIC STATISTICS, POISSON POINT-PROCESSES, AND MULTIPLE WIENER INTEGRALS [J].
DYNKIN, EB ;
MANDELBAUM, A .
ANNALS OF STATISTICS, 1983, 11 (03) :739-745