Clifford Product and Lorentzian Plane Displacements In 3-Dimensional Lorentzian Space

被引:6
作者
Gundogan, Halit [1 ]
Ozkaldi, Siddika [1 ]
机构
[1] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
关键词
Clifford algebra; Lorentzian space; split quaternion;
D O I
10.1007/s00006-008-0124-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by defining Clifford algebra product in 3-dimensional Lorentz space, L (3), it is shown that even Clifford algebra of L (3) corresponds to split quaternion algebra. Then, by using Lorentzian matrix multiplication, pole point of planar displacement in Lorentz plane L (2) is obtained. In addition, by defining degenerate Lorentz scalar product for L (3) and by using the components of pole points of Lorentz plane displacement in particular split hypercomplex numbers, it is shown that the Lorentzian planar displacements can be represented as a special split quaternion which we call it Lorentzian planar split quaternion.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 1971, ALGEBRA
[2]  
Catoni F., 2004, Adv. Appl. Clifford Algebr, V14, P47, DOI [10.1007/s00006-004-0008-2, DOI 10.1007/S00006-004-0008-2]
[3]   An introduction to commutative quaternions [J].
Catoni, Francesco ;
Cannata, Roberto ;
Zarnpetti, Paolo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) :1-28
[4]  
Gundogan H., 2006, Glass. Mat, V41, P329, DOI [10.3336/gm.41.2.15, DOI 10.3336/GM.41.2.15]
[5]  
McCarthy J. M., 1990, Introduction to theoretical kinematics
[6]  
ONeill B., 1983, PURE APPL MATH, V103
[7]  
Ratcliffe J.G., 1994, Foundations of Hyperbolic Manifolds, VVolume 149
[8]  
Rosenfeld B., 1997, GEOMETRY LIE GROUPS