Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region

被引:201
作者
Riehle, MM
Markianos, K
Niaré, O
Xu, JN
Li, J
Touré, AM
Podiougou, B
Oduol, F
Diawara, S
Diallo, M
Coulibaly, B
Ouatara, A
Kruglyak, L
Traoré, SF
Vernick, KD [1 ]
机构
[1] Univ Minnesota, Ctr Microbial & Plant Genom, St Paul, MN 55108 USA
[2] Univ Minnesota, Dept Microbiol, St Paul, MN 55108 USA
[3] Fred Hutchinson Canc Res Ctr, Program Computat Biol, Seattle, WA 98109 USA
[4] Univ Bamako, Dept Epidemiol Affectat Parasitaires, Bamako, Mali
[5] Princeton Univ, Carl Icahn Lab, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[6] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
关键词
D O I
10.1126/science.1124153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We surveyed an Anopheles gambiae population in a West African malaria transmission zone for naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus explains at least 89% of parasite-free mosquitoes in independent pedigrees. Together, the clustered loci form a genomic Plasmodium-resistance island that explains most of the genetic variation for malaria parasite infection of mosquitoes in nature. Among the candidate genes in this chromosome region, RNA interference knockdown assays confirm a role in Plasmodium resistance for Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1), encoding a leucine-rich repeat protein that is similar to molecules involved in natural pathogen resistance mechanisms in plants and mammals.
引用
收藏
页码:577 / 579
页数:3
相关论文
共 16 条
  • [1] Leucine-rich repeats and pathogen recognition in Toll-like receptors
    Bell, JK
    Mullen, GED
    Leifer, CA
    Mazzoni, A
    Davies, DR
    Segal, DM
    [J]. TRENDS IN IMMUNOLOGY, 2003, 24 (10) : 528 - 533
  • [2] Fungal pathogen reduces potential for malaria transmission
    Blanford, S
    Chan, BHK
    Jenkins, N
    Sim, D
    Turner, RJ
    Read, AF
    Thomas, MB
    [J]. SCIENCE, 2005, 308 (5728) : 1638 - 1641
  • [3] Host-microbe interactions: Shaping the evolution of the plant immune response
    Chisholm, ST
    Coaker, G
    Day, B
    Staskawicz, BJ
    [J]. CELL, 2006, 124 (04) : 803 - 814
  • [4] GENETIC SELECTION OF A PLASMODIUM-REFRACTORY STRAIN OF THE MALARIA VECTOR ANOPHELES-GAMBIAE
    COLLINS, FH
    SAKAI, RK
    VERNICK, KD
    PASKEWITZ, S
    SEELEY, DC
    MILLER, LH
    COLLINS, WE
    CAMPBELL, CC
    GWADZ, RW
    [J]. SCIENCE, 1986, 234 (4776) : 607 - 610
  • [5] Replication of an egfr-wing shape association in a wild-caught cohort of Drosaphila melanogaster
    Dworkin, I
    Palsson, A
    Gibson, G
    [J]. GENETICS, 2005, 169 (04) : 2115 - 2125
  • [6] A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle
    Franke-Fayard, B
    Trueman, H
    Ramesar, J
    Mendoza, J
    van der Keur, M
    van der Linden, R
    Sinden, RE
    Waters, AP
    Janse, CJ
    [J]. MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2004, 137 (01) : 23 - 33
  • [7] Graham MA, 2002, GENETICS, V162, P1961
  • [8] The fixation of malaria refractoriness in mosquitoes
    Hahn, MW
    Nuzhdin, SV
    [J]. CURRENT BIOLOGY, 2004, 14 (07) : R264 - R265
  • [9] NACHT-LRR proteins (NLRs) in bacterial infection and immunity
    Kufer, TA
    Fritz, JH
    Philpott, DJ
    [J]. TRENDS IN MICROBIOLOGY, 2005, 13 (08) : 381 - 388
  • [10] A potential regulatory polymorphism upstream of hairy is not associated with bristle number variation in wild-caught drosophila
    Macdonald, SJ
    Long, AD
    [J]. GENETICS, 2004, 167 (04) : 2127 - 2131