High temperature PEMFCs;
Polymer electrolyte membrane;
Water vapor effect;
Permeability;
Cell performance;
ACID DOPED POLYBENZIMIDAZOLE;
POLYMER ELECTROLYTE;
PROTON CONDUCTIVITY;
MEMBRANES;
TEMPERATURE;
OXYGEN;
DIFFUSIVITY;
SOLUBILITY;
PBI;
D O I:
10.1016/j.memsci.2008.09.040
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
The interaction of steam with phosphoric acid imbibed electrolyte composed of PBI/PPy(50)coPSF 50/50 polymer blend and its effect on fuel cell performance was studied regarding its permeability through and its chemical interaction with the membrane. It was found that steam is the only gas that permeates the membrane with a permeability coefficient 1.1 x 10(-14) mol cm cm(-2) s(-1) Pa-1 at 150 degrees C. This is attributed either to the high solubility of water in phosphoric acid OF to the chemical interaction with pyrophosphoric acid. The latter was demonstrated by carrying out TGA experiments under various water vapor partial pressures. Water reacts with pyrophosphoric acid in order to maintain the equilibrium concentration of phosphoric acid at high level, thus improving proton conductivity and fuel cell performance. In addition it is shown that excess water dissolves in the membrane thus maintaining the "membrane/acid" system at high hydration level. This depends both on temperature and steam partial pressure. Although in the present study it is shown that steam plays a significant role in the performance of the high temperature Polymer electrolyte membrane (PEM) fuel cell, nevertheless its feed with humidified gases is not necessary, due to the back transport of the water produced at the cathode. (C) 2008 Elsevier B.V. All rights reserved.
机构:
Ecole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, FranceEcole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, France
Bouchet, R
Siebert, E
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, FranceEcole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, France
机构:
Ecole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, FranceEcole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, France
Bouchet, R
Siebert, E
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, FranceEcole Natl Super Electrochim & Electrome Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, F-38402 St Martin Dheres, France