Fusion of active and passive infrared images for face recognition

被引:5
作者
Akhloufi, Moulay A. [1 ]
Bendada, Abdelhakim [1 ]
机构
[1] Univ Laval, Comp Vis & Syst Lab, Quebec City, PQ G1V 0A6, Canada
来源
THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXV | 2013年 / 8705卷
关键词
infrared imaging; face recognition; biometrics; texture analysis; image fusion;
D O I
10.1117/12.2017942
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This work introduces a new framework for active and passive infrared image fusion for face recognition applications. Two multispectral face recognition databases were used in our experiments: Equinox Database (Visible, SWIR, MWIR, LWIR) and mu-Faces Database (Visible, NIR, MWIR, LWIR). The proposed framework uses a fusion scheme in texture space in order to increase the performance of face recognition. The proposed texture space is based on the use of binary and ternary patterns. A new adaptive ternary pattern is also introduced. Active (SWIR and NIR) and passive (MWIR, LWIR) infrared modalities are used in this fusion scheme. An intra-spectral and inter-spectral fusion approaches are introduced. The obtained results are promising and show an increase in the recognition performance when texture channels are fused in a multi-scale fusion scheme.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Fusion of Face and Iris Biometrics on Mobile Devices Using Near-infrared Images [J].
Zhang, Qi ;
Li, Haiqing ;
Zhang, Man ;
He, Zhaofeng ;
Sun, Zhenan ;
Tan, Tieniu .
BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 :569-578
[42]   Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition [J].
Kong, Seong G. ;
Heo, Jingu ;
Boughorbel, Faysal ;
Zheng, Yue ;
Abidi, Besma R. ;
Koschan, Andreas ;
Yi, Mingzhong ;
Abidi, Mongi A. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 71 (02) :215-233
[43]   Multiscale Fusion of Visible and Thermal IR Images for Illumination-Invariant Face Recognition [J].
Seong G. Kong ;
Jingu Heo ;
Faysal Boughorbel ;
Yue Zheng ;
Besma R. Abidi ;
Andreas Koschan ;
Mingzhong Yi ;
Mongi A. Abidi .
International Journal of Computer Vision, 2007, 71 :215-233
[44]   Near-infrared face recognition by fusion of E-GV-LBP and FKNN [J].
Li, Weisheng ;
Wang, Lidou .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (01) :208-223
[45]   HyperFace: A Deep Fusion Model for Hyperspectral Face Recognition [J].
Li, Wenlong ;
Cen, Xi ;
Pang, Liaojun ;
Cao, Zhicheng .
SENSORS, 2024, 24 (09)
[46]   A Multibiometric Face Recognition Fusion Framework with Template Protection [J].
Chindaro, S. ;
Deravi, F. ;
Zhou, Z. ;
Ng, M. W. R. ;
Neves, M. Castro ;
Zhou, X. ;
Kelkboom, E. .
BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION VII, 2010, 7667
[47]   Near Infrared and Visible Face Recognition based on Decision Fusion of LBP and DCT Features [J].
Xie, Zhihua ;
Zhang, Shuai ;
Liu, Guodong ;
Xiong, Jinquan .
MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
[48]   A multistep approach for infrared face recognition in texture space [J].
Akhloufi, Moulay A. ;
Bendada, Abdelhakim .
THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXV, 2013, 8705
[49]   Fast Quality Assessment of Face Images for Face Recognition [J].
Yang Fei ;
Su Jianbo ;
Dai Jingwen .
PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 4, 2008, :531-535
[50]   Good match exploration for thermal infrared face recognition based on YWF-SIFT with multi-scale fusion [J].
Bai, Junfeng ;
Ma, Yong ;
Li, Jing ;
Li, Hao ;
Fang, Yu ;
Wang, Rui ;
Wang, Hongyuan .
INFRARED PHYSICS & TECHNOLOGY, 2014, 67 :91-97