ADDITIVE FUNCTIONAL INEQUALITIES IN PARANORMED SPACES

被引:0
作者
Yang, Seo-Yun [1 ]
Park, Choonkil [2 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Jordan-von Neumann functional equation; Hyers-Ulam stability; paranormed space; functional inequality; ULAM-RASSIAS STABILITY; MAPPINGS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the following additive functional inequalities parallel to 1/s f(x) + 1/s f(y) + f(z) + f(w)parallel to <= parallel to f (x+y/s + z + w)parallel to, parallel to 1/s f(x) + 1/s f(y) + 1/s f(z) + f(w)parallel to <= parallel to f(x+y+z/s + w)parallel to in paranormed spaces for a fixed integer s greater than 1. Furthermore, we prove the Hyers-Ulam stability of the above additive functional inequalities in paranormed spaces.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 28 条
  • [1] [Anonymous], 2003, Aequationes Math., V66, P191
  • [2] [Anonymous], 1991, Acta Comment. Univ. Tartueneis
  • [3] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [4] [Anonymous], J INEQUAL APPL
  • [5] [Anonymous], 2002, FUNCTIONAL EQUATIONS
  • [6] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
  • [7] FAST H., 1951, Colloq. Math., V2, P241
  • [8] Fechner W., 2006, Aequationes Math., V71, P149
  • [9] Fridy JA, 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301
  • [10] Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]