Pseudo memory effects, majorization and entropy in quantum random walks

被引:20
作者
Bracken, AJ [1 ]
Ellinas, D
Tsohantjis, I
机构
[1] Univ Queensland, Ctr Math Phys, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[3] Tech Univ Crete, Div Math, GR-73100 Khania, Greece
[4] Tech Univ Crete, Div Phys, GR-73100 Khania, Greece
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 08期
关键词
D O I
10.1088/0305-4470/37/8/L02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.
引用
收藏
页码:L91 / L97
页数:7
相关论文
共 21 条
  • [1] Aharonov Dorit, 2001, arXiv: quant-ph/0012090, P50
  • [2] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [3] Alberti P. M., 1982, Stochasticity and Partial Order
  • [4] Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
  • [5] Bhatia R., 2013, MATRIX ANAL
  • [6] Quantum operations, state transformations and probabilities
    Chefles, A
    [J]. PHYSICAL REVIEW A, 2002, 65 (05): : 9
  • [7] CHILDS AM, 2002, QUANTPH0209131
  • [8] An Example of the Difference Between Quantum and Classical Random Walks
    Childs, Andrew M.
    Farhi, Edward
    Gutmann, Sam
    [J]. QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 35 - 43
  • [9] Quantum walks in optical lattices -: art. no. 052319
    Dür, W
    Raussendorf, R
    Kendon, VM
    Briegel, HJ
    [J]. PHYSICAL REVIEW A, 2002, 66 (05): : 8
  • [10] Hughes B. D., 1995, RANDOM WALKS RANDOM, V1