Variable-Size Cooperative Coevolutionary Particle Swarm Optimization for Feature Selection on High-Dimensional Data
被引:254
作者:
Song, Xian-Fang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
Song, Xian-Fang
[1
]
Zhang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
Zhang, Yong
[1
]
Guo, Yi-Nan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
Guo, Yi-Nan
[1
]
Sun, Xiao-Yan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
Sun, Xiao-Yan
[1
]
Wang, Yong-Li
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Econ & Mangement, Beijing 102206, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
Wang, Yong-Li
[2
]
机构:
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] North China Elect Power Univ, Sch Econ & Mangement, Beijing 102206, Peoples R China
Evolutionary feature selection (FS) methods face the challenge of "curse of dimensionality" when dealing with high-dimensional data. Focusing on this challenge, this article studies a variable-size cooperative coevolutionary particle swarm optimization algorithm (VS-CCPSO) for FS. The proposed algorithm employs the idea of "divide and conquer" in cooperative coevolutionary approach, but several new developed problem-guided operators/strategies make it more suitable for FS problems. First, a space division strategy based on the feature importance is presented, which can classify relevant features into the same subspace with a low computational cost. Following that, an adaptive adjustment mechanism of subswarm size is developed to maintain an appropriate size for each subswarm, with the purpose of saving computational cost on evaluating particles. Moreover, a particle deletion strategy based on fitness-guided binary clustering, and a particle generation strategy based on feature importance and crossover both are designed to ensure the quality of particles in the subswarms. We apply VS-CCPSO to 12 typical datasets and compare it with six state-of-the-art methods. The experimental results show that VS-CCPSO has the capability of obtaining good feature subsets, suggesting its competitiveness for tackling FS problems with high dimensionality.
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Mistry, Kamlesh
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Zhang, Li
Neoh, Siew Chin
论文数: 0引用数: 0
h-index: 0
机构:
UCSI Univ, Fac Engn Technol & Built Environm, Kuala Lumpur 56000, MalaysiaNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Neoh, Siew Chin
Lim, Chee Peng
论文数: 0引用数: 0
h-index: 0
机构:
Deakin Univ, Ctr Intelligent Syst Res, Geelong, Vic 3216, AustraliaNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Lim, Chee Peng
Fielding, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Peoples R ChinaShenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Mistry, Kamlesh
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Zhang, Li
Neoh, Siew Chin
论文数: 0引用数: 0
h-index: 0
机构:
UCSI Univ, Fac Engn Technol & Built Environm, Kuala Lumpur 56000, MalaysiaNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Neoh, Siew Chin
Lim, Chee Peng
论文数: 0引用数: 0
h-index: 0
机构:
Deakin Univ, Ctr Intelligent Syst Res, Geelong, Vic 3216, AustraliaNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
Lim, Chee Peng
Fielding, Ben
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, EnglandNorthumbria Univ, Fac Engn & Environm, Dept Comp Sci & Digital Technol, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England