Challenges & opportunities for phage-based in situ microbiome engineering in the gut

被引:27
作者
Voorhees, Peter J. [1 ]
Cruz-Teran, Carlos [1 ]
Edelstein, Jasmine [2 ]
Lai, Samuel K. [1 ,2 ,3 ]
机构
[1] Univ North Carolina Chapel Hill, Div Pharmacoengn & Mol Pharmaceut, Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
[2] UNC NCSU Joint Dept Biomed Engn, Univ North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
[3] Univ North Carolina Chapel Hill, Dept Microbiol & Immunol, Sch Med, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Bacteriophage; Phage; Microbiome; Microbiome engineering; in situ engineering; Microbiome gene therapy; ABORTIVE INFECTION SYSTEM; HOST-RANGE; GENE-EXPRESSION; HOMOLOGOUS RECOMBINATION; BIOLOGICAL CONTAINMENT; BACTERIOPHAGE-LAMBDA; T2; PHAGE; PROTEIN; TRANSLATION; COLI;
D O I
10.1016/j.jconrel.2020.06.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The gut microbiome is a promising target for the development of GI tract therapies, yet it has been underexploited due, in part, to a lack of tools to control and manipulate complex microbial communities. To date, the most common approach in harnessing bacteria for therapeutic purposes has been to deliver ex vivo engineered bacteria-effectively taking a bacterial cell therapy-based approach. An alternative approach involves taking advantage of the rich microbial ecosystem in the gut by genetically modifying the microbiome in situ through the use of engineered bacteriophages-akin to human gene therapies delivered by viral vectors. In this review, we present the challenges and opportunities associated with engineering bacteriophages to control and manipulate the gut microbiome.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 116 条
[1]   Phage Therapy in the Postantibiotic Era [J].
Altamirano, Fernando L. Gordillo ;
Barr, Jeremy J. .
CLINICAL MICROBIOLOGY REVIEWS, 2019, 32 (02)
[2]   Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing [J].
Ando, Hiroki ;
Lemire, Sebastien ;
Pires, Diana P. ;
Lu, Timothy K. .
CELL SYSTEMS, 2015, 1 (03) :187-196
[3]   The distributions, mechanisms, and structures of metabolite-binding riboswitches [J].
Barrick, Jeffrey E. ;
Breaker, Ronald R. .
GENOME BIOLOGY, 2007, 8 (11)
[4]  
Benjamin SF, 2012, FUEL SYSTEMS FOR IC ENGINES, P43
[5]   Inhibition of Superinfection and the Evolution of Viral Latency [J].
Berngruber, Thomas W. ;
Weissing, Franz J. ;
Gandon, Sylvain .
JOURNAL OF VIROLOGY, 2010, 84 (19) :10200-10208
[6]   Impact of antimicrobial therapy on the gut microbiome [J].
Bhalodi, Amira A. ;
van Engelen, Tjitske S. R. ;
Virk, Harjeet S. ;
Wiersinga, W. Joost .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 :6-15
[7]   Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications [J].
Bober, Josef R. ;
Beisel, Chase L. ;
Nair, Nikhil U. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 20, 2018, 20 :277-300
[8]   Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria [J].
Brophy, Jennifer A. N. ;
Triassi, Alexander J. ;
Adams, Bryn L. ;
Renberg, Rebecca L. ;
Stratis-Cullum, Dimitra N. ;
Grossman, Alan D. ;
Voigt, Christopher A. .
NATURE MICROBIOLOGY, 2018, 3 (09) :1043-1053
[9]  
Brophy JAN, 2014, NAT METHODS, V11, P508, DOI [10.1038/NMETH.2926, 10.1038/nmeth.2926]
[10]  
Calendar R., 2006, BACTERIOPHAGES