Interaction of Global-Scale Atmospheric Vortices: Modeling Based on Hamiltonian Dynamic System of Antipodal Point Vortices on Rotating Sphere

被引:3
作者
Mokhov, Igor I. [1 ]
Chefranov, Sergey G. [1 ]
Chefranov, Alexander G. [2 ]
机构
[1] AM Obukhov Inst Atmospher Phys RAS, Moscow, Russia
[2] Eastern Mediterranean Univ, Gazimagusa, Cyprus
来源
IUTAM SYMPOSIUM ON WAVES IN FLUIDS: EFFECTS OF NONLINEARITY, ROTATION, STRATIFICATION AND DISSIPATION | 2013年 / 8卷
基金
俄罗斯基础研究基金会;
关键词
point vortices pairs; rotating sphere; atmospheric centers of action; blockings; BETA-PLANE; CENTERS;
D O I
10.1016/j.piutam.2013.04.023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown for the first time that only an antipodal vortex pair (APV) is the elementary singular vortex object on the rotating sphere compatible with the hydrodynamic equations. The exact weak solution of the absolute vorticity equation on the rotating sphere is obtained in the form of Hamiltonian dynamic system for N interacting APVs. This is the first model describing interaction of Barrett vortices corresponding to atmospheric centers of action (ACA). In particular, new steady-state conditions for N = 2 are obtained. These analytical conditions are used for the analysis of coupled cyclone-anticyclone ACAs over oceans in the Northern Hemisphere. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 32 条
[1]  
[Anonymous], Z MATH PHYS
[2]  
BARRETT EW, 1958, TELLUS, V10, P395
[3]  
Batchelor GK, 1967, An introduction to fluid dynamics
[4]  
Bogomolov V. A., 1977, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, P57
[5]  
BOGOMOLOV VA, 1979, IZV AN SSSR FIZ ATM+, V15, P243
[6]  
[Борисов Алексей Владимирович Borisov A.V.], 2007, [Нелинейная динамика, Russian Journal of Nonlinear Dynamics, Nelineinaya dinamika], V3, P211
[7]  
CHEFRANOV SG, 1985, IZV AN SSSR FIZ ATM+, V21, P1026
[8]  
CRAIG RA, 1945, J METEOROL, V2, P175, DOI 10.1175/1520-0469(1945)002<0175:ASOTNV>2.0.CO
[9]  
2
[10]   Barotropic vortex pairs on a rotating sphere [J].
DiBattista, MT ;
Polvani, LM .
JOURNAL OF FLUID MECHANICS, 1998, 358 :107-133