The emerging roles of artificial intelligence in cancer drug development and precision therapy

被引:78
作者
Liang, Guosheng [1 ]
Fan, Wenguo [2 ]
Luo, Hui [1 ]
Zhu, Xiao [1 ]
机构
[1] Guangdong Med Univ, Marine Med Res Inst Guangdong Zhanjiang GDZJMMRI, Southern Marine Sci & Engn Guangdong Lab Zhanjian, Zhanjiang, Peoples R China
[2] Sun Yat Sen Univ, Hosp Stomatol, Guanghua Sch Stomatol, Dept Anesthesiol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Anticancer therapy; Drug development; Precision therapy; BREAST-CANCER; ONCOLOGY;
D O I
10.1016/j.biopha.2020.110255
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Artificial intelligence (AI) has strong logical reasoning ability and independent learning ability, which can simulate the thinking process of the human brain. AI technologies such as machine learning can profoundly optimize the existing mode of anticancer drug research. But at present AI also has its relative limitation. In this paper, the development of artificial intelligence technology such as deep learning and machine learning in anticancer drug research is reviewed. At the same time, we look forward to the future of AI.
引用
收藏
页数:5
相关论文
共 70 条
[1]  
ABBASI J, 2018, JAMA-J AM MED ASSOC, V320, P2303, DOI DOI 10.1001/JAMA.2018.19383
[2]  
ABBASI J, 2019, JAMA-J AM MED ASSOC, V322, P1756, DOI DOI 10.1001/JAMA.2019.18225
[3]   Knowledge-based automated planning for oropharyngeal cancer [J].
Babier, Aaron ;
Boutilier, Justin J. ;
McNiven, Andrea L. ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2018, 45 (07) :2875-2883
[4]   High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision [J].
Bahl, Manisha ;
Barzilay, Regina ;
Yedidia, Adam B. ;
Locascio, Nicholas J. ;
Yu, Lili ;
Lehman, Constance D. .
RADIOLOGY, 2018, 286 (03) :810-818
[5]   Machine Learning for Molecular Modelling in Drug Design [J].
Ballester, Pedro J. .
BIOMOLECULES, 2019, 9 (06)
[6]   The power of deep learning to ligand-based novel drug discovery [J].
Baskin, Igor I. .
EXPERT OPINION ON DRUG DISCOVERY, 2020, 15 (07) :755-764
[7]   Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center [J].
Beck, J. Thaddeus ;
Rammage, Melissa ;
Jackson, Gretchen P. ;
Preininger, Anita M. ;
Dankwa-Mullan, Irene ;
Roebuck, M. Christopher ;
Torres, Adam ;
Holtzen, Helen ;
Coverdill, Sadie E. ;
Williamson, M. Paul ;
Chau, Quincy ;
Rhee, Kyu ;
Vinegra, Michael .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :50-59
[8]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[9]   Supervised Machine-Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma [J].
Blackledge, Matthew D. ;
Winfield, Jessica M. ;
Miah, Aisha ;
Strauss, Dirk ;
Thway, Khin ;
Morgan, Veronica A. ;
Collins, David J. ;
Koh, Dow-Mu ;
Leach, Martin O. ;
Messiou, Christina .
FRONTIERS IN ONCOLOGY, 2019, 9
[10]   Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer [J].
Bogani, Giorgio ;
Rossetti, Diego ;
Ditto, Antonino ;
Martinelli, Fabio ;
Chiappa, Valentina ;
Mosca, Lavinia ;
Maggiore, Umberto Leone Roberti ;
Ferla, Stefano ;
Lorusso, Domenica ;
Raspagliesi, Francesco .
JOURNAL OF GYNECOLOGIC ONCOLOGY, 2018, 29 (05)