Real-time traffic incident detection based on a hybrid deep learning model

被引:55
|
作者
Li, Linchao [1 ]
Lin, Yi [2 ]
Du, Bowen [3 ]
Yang, Fan [4 ]
Ran, Bin [4 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[4] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
关键词
Generative adversarial networks; deep learning; autoencoder; small sample size; imbalanced data; DETECTION ALGORITHMS; PREDICTION;
D O I
10.1080/23249935.2020.1813214
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Small sample sizes and imbalanced datasets have been two difficulties in previous traffic incident detection-related studies. Moreover, real-time characteristics of incident detection models must be improved to satisfy the needs of traffic management. In this study, a hybrid model is proposed to address the above problems. In the proposed model, a generative adversarial network (GAN) is used to expand the sample size and balance datasets, and a temporal and spatially stacked autoencoder (TSSAE) is used to extract temporal and spatial correlations of traffic flow and detect incidents. Using a real-world dataset, the model is evaluated from different aspects. The results show that the proposed model, considering both temporal and spatial variables, outperforms some benchmark models. The model can both increase the incident sample size and balance the dataset. Furthermore, the sample selection method improves the real-time capacity of the detection.
引用
收藏
页码:78 / 98
页数:21
相关论文
共 50 条
  • [1] Real-time Traffic Incident Detection Using an Autoencoder Model
    Yang, Huan
    Wang, Yu
    Zhao, Han
    Zhu, Jinlin
    Wang, Danwei
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [2] Real-time traffic incident detection using a probabilistic topic model
    Kinoshita, Akira
    Takasu, Atsuhiro
    Adachi, Jun
    INFORMATION SYSTEMS, 2015, 54 : 169 - 188
  • [3] Real-time Detection and Recognition of Live Panoramic Traffic Signs Based on Deep Learning
    Meng, Xiangsong
    Zhang, Xiangli
    Yan, Kun
    Zhang, Hongmei
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 584 - 588
  • [4] Real-Time Traffic Incident Detection with Classification Methods
    Li, Linchao
    Zhang, Jian
    Zheng, Yuan
    Ran, Bin
    GREEN INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 419 : 777 - 788
  • [5] Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
    Ghahremannezhad, Hadi
    Shi, Hang
    Liu, Chengjun
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [6] TPCAM: Real-time Traffic Pattern Collection and Analysis Model based on Deep Learning
    Sreekumar, Unnikrishnan Kizhakkemadam
    Devaraj, Revathy
    Li, Qi
    Liu, Kaikai
    2017 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTED, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2017,
  • [7] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [8] Real-Time Lane Detection Based on Deep Learning
    Baek, Sun-Woo
    Kim, Myeong-Jun
    Suddamalla, Upendra
    Wong, Anthony
    Lee, Bang-Hyon
    Kim, Jung-Ha
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 655 - 664
  • [9] A Real Time Traffic Flow Model Based on Deep Learning
    Zhang, Shuai
    Pei, Cai Y.
    Liu, Wen Y.
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (08): : 2473 - 2489
  • [10] A Real-time Anonymous Traffic Detection based on Reinforcement Learning
    Liu, Dazhou
    Park, Younghee
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 574 - 577