Degree of Convergence of Functions of Multiple Fourier Series in Sobolev Spaces

被引:0
作者
Nigam, H. K. [1 ]
Mursaleen, M. [2 ]
Yadav, Saroj [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, Bihar, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2022年 / 12卷 / 02期
关键词
degree of convergence; modulus of smoothness; Sobolev spaces; N-dimensional Riesz means; multiple Fourier series; MATRIX MEANS; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the degree of convergence of a function of two dimensional variable of double Fourier series in Sobolev spaces using double Riesz means is obtained. The degree of convergence of a function of N-dimensional variable of N-multiple Fourier series in Sobolev spaces using N-dimensional Riesz means is also obtained in this paper.
引用
收藏
页码:72 / 91
页数:20
相关论文
共 27 条
[1]  
Adams R. A., 2003, SOBOLEV SPACES
[2]  
Brezis H, 2011, UNIVERSITEXT, P1
[3]   CM CONVERGENCE OF TRIFONOMETRIC INTERPOLANTS [J].
BUBE, KP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1258-1268
[4]  
Butzer P. L., 1967, Semi-Groups of Operators and Approximation
[5]  
Butzer P.L., 1971, FOURIER ANAL APPROXI
[6]  
Chui CK., 1992, INTRO WAVELETS WAVEL
[7]  
Deger U, 2018, AZERBAIJAN J MATH, V8, P122
[8]   A Note on the Degree of Approximation by Matrix Means in the Generalized Holder Metric [J].
Deger, U. .
UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (04) :545-556
[9]  
DeVore A., 1993, Constructive Approximation, Springer Science & Business Media
[10]  
Guven A, 2018, AZERBAIJAN J MATH, V8, P52