Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays

被引:211
作者
Paulose, M
Mor, GK
Varghese, OK
Shankar, K
Grimes, CA
机构
[1] Penn State Univ, Dept Elect Engn, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
hydrogen; photolysis; photoelectrolysis; titania; nanotube; nanotube array;
D O I
10.1016/j.jphotochem.2005.06.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examine the visible light water-photoelectrolysis and photoelectrochernical properties of highly ordered titania nanotube arrays as a function of nanotube crystallinity, length (up to 6.4 mu m), and pore size. Most noteworthy of our results, under visible light AM 1.5 illumination (100 mW/cm(2)) the titania nanotube array photoanodes (1 cm(2) area), pore size 110 nm, wall thickness 20 nm, and length 6 mu m, generate hydrogen by water photoelectrolysis at a rate of 175 mu L/h, with a photoconversion efficiency of 0.6%. The energy-time normalized hydrogen evolution rate is 1.75 mL/h W. The oxygen bubbles evolving from the nanotube array photoanode do not remain on the sample, hence the output remains stable with time irrespective of the duration of hydrogen production. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 42 条
[1]   Formation of titania nanotubes and applications for dye-sensitized solar cells [J].
Adachi, M ;
Murata, Y ;
Okada, I ;
Yoshikawa, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :G488-G493
[2]   Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting [J].
Aroutiounian, VM ;
Arakelyan, VM ;
Shahnazaryan, GE .
SOLAR ENERGY, 2005, 78 (05) :581-592
[3]   An overview on semiconductor particulate systems for photoproduction of hydrogen [J].
Ashokkumar, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (06) :427-438
[4]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[5]  
Benkstein KD, 2003, J PHYS CHEM B, V107, P7759, DOI [10.1021/jp022681l, 10.1021/jp0226811]
[6]   Solar photoproduction of hydrogen: A review [J].
Bolton, JR .
SOLAR ENERGY, 1996, 57 (01) :37-50
[7]   Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water [J].
Butterfield, IM ;
Christensen, PA ;
Hamnett, A ;
Shaw, KE ;
Walker, GM ;
Walker, SA ;
Howarth, CR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (04) :385-395
[8]   The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J].
Cai, QY ;
Paulose, M ;
Varghese, OK ;
Grimes, CA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) :230-236
[9]   Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells [J].
Cao, F ;
Oskam, G ;
Meyer, GJ ;
Searson, PC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (42) :17021-17027
[10]   SENSITIZATION OF SEMICONDUCTING ELECTRODES WITH RUTHENIUM-BASED DYES [J].
DAREEDWARDS, MP ;
GOODENOUGH, JB ;
HAMNETT, A ;
SEDDON, KR ;
WRIGHT, RD .
FARADAY DISCUSSIONS, 1980, 70 :285-298