Ribonucleotides Misincorporated into DNA Act as Strand-Discrimination Signals in Eukaryotic Mismatch Repair

被引:123
作者
Ghodgaonkar, Medini Manohar [1 ,2 ]
Lazzaro, Federico [3 ]
Olivera-Pimentel, Maite [1 ,2 ]
Artola-Boran, Mariela [1 ,2 ]
Cejka, Petr [1 ,2 ]
Reijns, Martin A. [4 ]
Jackson, Andrew P. [4 ]
Plevani, Paolo [3 ]
Muzi-Falconi, Marco [3 ]
Jiricny, Josef [1 ,2 ]
机构
[1] Univ Zurich, Inst Mol Canc Res, CH-8057 Zurich, Switzerland
[2] ETH, CH-8057 Zurich, Switzerland
[3] Univ Milan, Dipartimento Biosci, I-20133 Milan, Italy
[4] Univ Edinburgh, IGMM, MRC, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland
基金
瑞士国家科学基金会;
关键词
MUTL-ALPHA; REPLICATION ERRORS; RNASE-H; EXCISION; INSTABILITY; YEAST; CYTOTOXICITY; SUBSTRATE; EXTRACTS; CELLS;
D O I
10.1016/j.molcel.2013.03.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To improve replication fidelity, mismatch repair (MMR) must detect non-Watson-Crick base pairs and direct their repair to the nascent DNA strand. Eukaryotic MMR in vitro requires pre-existing strand discontinuities for initiation; consequently, it has been postulated that MMR in vivo initiates at Okazaki fragment termini in the lagging strand and at nicks generated in the leading strand by the mismatchactivated MLH1/PMS2 endonuclease. We now show that a single ribonucleotide in the vicinity of a mismatch can act as an initiation site for MMR in human cell extracts and that MMR activation in this system is dependent on RNase H2. As loss of RNase H2 in S.cerevisiae results in a mild MMR defect that is reflected in increased mutagenesis, MMR in vivo might also initiate at RNase H2-generated nicks. We therefore propose that ribonucleotides misincoporated during DNA replication serve as physiological markers of the nascent DNA strand.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 39 条
[1]   Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts [J].
Andersen, S ;
Heine, T ;
Sneve, R ;
König, I ;
Krokan, HE ;
Epe, B ;
Nilsen, H .
CARCINOGENESIS, 2005, 26 (03) :547-555
[2]   Characterization of the "mismatch repairosome" and its role in the processing of modified nucleosides in vitro [J].
Baerenfaller, Katja ;
Fischer, Franziska ;
Jiricny, Josef .
DNA REPAIR, PT A, 2006, 408 :285-+
[3]   Homologous recombination rescues mismatch-repair-dependent cytotoxicity of SN1-type methylating agents in S-cerevisiae [J].
Cejka, P ;
Mojas, N ;
Gillet, L ;
Schär, P ;
Jiricny, J .
CURRENT BIOLOGY, 2005, 15 (15) :1395-1400
[4]   Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1 [J].
Cejka, P ;
Stojic, L ;
Mojas, N ;
Russell, AM ;
Heinimann, K ;
Cannavó, E ;
di Pietro, M ;
Marra, G ;
Jiricny, J .
EMBO JOURNAL, 2003, 22 (09) :2245-2254
[5]   Ribonuclease H: the enzymes in eukaryotes [J].
Cerritelli, Susana M. ;
Crouch, Robert J. .
FEBS JOURNAL, 2009, 276 (06) :1494-1505
[6]   Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε [J].
Clark, Alan B. ;
Lujan, Scott A. ;
Kissling, Grace E. ;
Kunkel, Thomas A. .
DNA REPAIR, 2011, 10 (05) :476-482
[7]  
CLAVERYS JP, 1986, MICROBIOL REV, V50, P133, DOI 10.1128/MMBR.50.2.133-165.1986
[8]   Human mismatch repair - Reconstitution of a nick-directed bidirectional reaction [J].
Constantin, N ;
Dzantiev, L ;
Kadyrov, FA ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :39752-39761
[9]  
Dixon W.J., 1983, Introduction to Statistical Analysis, V4th
[10]  
EDER PS, 1991, J BIOL CHEM, V266, P6472