Hyperbolic Octonion Formulation of Gravitational Field Equations

被引:29
|
作者
Demir, Suleyman [1 ]
机构
[1] Anadolu Univ, Fac Sci, Dept Phys, TR-26470 Eskisehir, Turkey
关键词
Octonion; Gravitational field equations; Proca-Maxwell equations; Monopole; MAGNETIC MONOPOLES; MAXWELL EQUATIONS; CONIC SEDENIONS; ELECTRODYNAMICS; GRAVITY; DYONS; ELECTROMAGNETISM; RELATIVITY; ALGEBRA;
D O I
10.1007/s10773-012-1307-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Maxwell-Proca type field equations of linear gravity are formulated in terms of hyperbolic octonions (split octonions). A hyperbolic octonionic gravitational wave equation with massive gravitons and gravitomagnetic monopoles is proposed. The real gravitoelectromagnetic field equations are recovered and written in compact form from an octonionic potential. In the absence of charges, this reduces to the Klein-Gordon equation of motion for the massive graviton. The analogy between massive gravitational theory and electromagnetism is shown in terms of the present formulation.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [31] Falling charge in a gravitational field and radiation reaction
    Bracken, Paul
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [32] Falling charge in a gravitational field and radiation reaction
    Paul Bracken
    Scientific Reports, 14
  • [33] Dual octonion electrodynamics with the massive field of dyons
    Chanyal, B. C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [34] Space-time algebra for the generalization of gravitational field equations
    SÜLEYMAN DEMİR
    Pramana, 2013, 80 : 811 - 823
  • [35] GRAVITATIONAL FIELD EQUATIONS AND THEORY OF DARK MATTER AND DARK ENERGY
    Ma, Tian
    Wang, Shouhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 335 - 366
  • [36] Hyperbolic Quaternion Formulation of Electromagnetism
    Süleyman Demir
    Murat Tanışlı
    Nuray Candemir
    Advances in Applied Clifford Algebras, 2010, 20 : 547 - 563
  • [37] Horizon thermodynamics and gravitational field equations in quasi-topological gravity
    Sheykhi, A.
    Dehghani, M. H.
    Dehghani, R.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (04) : 1 - 14
  • [38] Generalized nonconservative gravitational field equations from Herglotz action principle
    Paiva, Juilson A. P.
    Lazo, Matheus J.
    Zanchin, Vilson T.
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [39] Horizon thermodynamics and gravitational field equations in quasi-topological gravity
    A. Sheykhi
    M. H. Dehghani
    R. Dehghani
    General Relativity and Gravitation, 2014, 46
  • [40] Spreadsheet solution of hyperbolic partial differential equations
    Kharab, A
    Kharab, R
    IEEE TRANSACTIONS ON EDUCATION, 1997, 40 (01) : 103 - 110