Preparation and Evaluation of Hybrid Composites of Chemical Fuel and Multi-walled Carbon Nanotubes in the Study of Thermopower Waves

被引:2
作者
Hwang, Hayoung [1 ]
Yeo, Taehan [1 ]
Cho, Yonghwan [1 ]
Shin, Dongjoon [1 ]
Choi, Wonjoon [1 ]
机构
[1] Korea Univ, Sch Mech Engn, Seoul, South Korea
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2015年 / 98期
基金
新加坡国家研究基金会;
关键词
Engineering; Issue; 98; thermopower wave; combustion; carbon nanotube; chemical fuel; thermal transport; energy conversion; picric acid; COMBUSTION; OUTPUT; HEATS;
D O I
10.3791/52818
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When a chemical fuel at a certain position in a hybrid composite of the fuel and a micro/nanostructured material is ignited, chemical combustion occurs along the interface between the fuel and core materials. Simultaneously, dynamic changes in thermal and chemical potentials across the micro/nanostructured materials result in concomitant electrical energy generation induced by charge transfer in the form of a high-output voltage pulse. We demonstrate the entire procedure of a thermopower wave experiment, from synthesis to evaluation. Thermal chemical vapor deposition and the wet impregnation process are respectively employed for the synthesis of a multi-walled carbon nanotube array and a hybrid composite of picric acid/sodium azide/multi-walled carbon nanotubes. The prepared hybrid composites are used to fabricate a thermopower wave generator with connecting electrodes. The combustion of the hybrid composite is initiated by laser heating or Joule-heating, and the corresponding combustion propagation, direct electrical energy generation, and real-time temperature changes are measured using a highspeed microscopy system, an oscilloscope, and an optical pyrometer, respectively. Furthermore, the crucial strategies to be adopted in the synthesis of hybrid composite and initiation of their combustion that enhance the overall thermopower wave energy transfer are proposed.
引用
收藏
页数:9
相关论文
共 19 条
[1]   Wavefront Velocity Oscillations of Carbon-Nanotube-Guided Thermopower Waves: Nanoscale Alternating Current Sources [J].
Abrahamson, Joel T. ;
Choi, Wonjoon ;
Schonenbach, Nicole S. ;
Park, Jungsik ;
Han, Jae-Hee ;
Walsh, Michael P. ;
Kalantar-zadeh, Kourosh ;
Strano, Michael S. .
ACS NANO, 2011, 5 (01) :367-375
[2]   Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon Nanotube Arrays [J].
Aria, Adrianus Indrat ;
Gharib, Morteza .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (74)
[3]   Carbon nanotube-guided thermopower waves [J].
Choi, Wonjoon ;
Abrahamson, Joel T. ;
Strano, Jennifer M. ;
Strano, Michael S. .
MATERIALS TODAY, 2010, 13 (10) :22-33
[4]  
Choi W, 2010, NAT MATER, V9, P423, DOI [10.1038/nmat2714, 10.1038/NMAT2714]
[5]   Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures [J].
Copic, Davor ;
Park, Sei Jin ;
Tawfick, Sameh ;
De Volder, Michael ;
Hart, A. John .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (65)
[7]   Do special noncovalent π-π stacking interactions really exist? [J].
Grimme, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (18) :3430-3434
[8]   Enhanced Electrical Potential of Thermoelectric Power Waves by Sb2Te3-Coated Multiwalled Carbon Nanotube Arrays [J].
Hong, Seunghyun ;
Kim, Wonyoung ;
Jeon, Seong-Jae ;
Lim, Seong Chu ;
Lee, Hoo-Jeong ;
Hyun, Seungmin ;
Lee, Young Hee ;
Baik, Seunghyun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (02) :913-917
[9]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[10]   THE RAMAN-SPECTRA OF SOME AROMATIC NITRO-COMPOUNDS [J].
PASSINGHAM, C ;
HENDRA, PJ ;
HODGES, C ;
WILLIS, HA .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1991, 47 (9-10) :1235-1245