A DISTRIBUTED AND INCREMENTAL SVD ALGORITHM FOR AGGLOMERATIVE DATA ANALYSIS ON LARGE NETWORKS

被引:31
作者
Iwen, M. A. [1 ,2 ]
Ong, B. W. [3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
singular value decomposition; low-rank approximations; distributed computing; incremental SVD; SINGULAR-VALUE DECOMPOSITION; UPDATING ALGORITHM; PARALLEL; COMMUNICATION;
D O I
10.1137/16M1058467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that the SVD of a matrix can be constructed efficiently in a hierarchical approach. The proposed algorithm is proven to recover the singular values and left singular vectors of the input matrix A if its rank is known. Further, the hierarchical algorithm can be used to recover the d largest singular values and left singular vectors with bounded error. It is also shown that the proposed method is stable with respect to round-off errors or corruption of the original matrix entries. Numerical experiments validate the proposed algorithms and parallel cost analysis.
引用
收藏
页码:1699 / 1718
页数:20
相关论文
共 38 条
[1]   Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects [J].
Agullo, Emmanuel ;
Demmel, Jim ;
Dongarra, Jack ;
Hadri, Bilel ;
Kurzak, Jakub ;
Langou, Julien ;
Ltaief, Hatem ;
Luszczek, Piotr ;
Tomov, Stanimire .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[2]   Multi-scale geometric methods for data sets II: Geometric Multi-Resolution Analysis [J].
Allard, William K. ;
Chen, Guangliang ;
Maggioni, Mauro .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (03) :435-462
[3]  
[Anonymous], 2015, CORR
[4]  
[Anonymous], 2009, Hadoop: The Definitive Guide
[5]   Low-Rank Incremental methods for computing dominant singular subspaces [J].
Baker, C. G. ;
Gallivan, K. A. ;
Van Dooren, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) :2866-2888
[6]  
Balzano L, 2013, 2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), P1, DOI 10.1109/CAMSAP.2013.6713992
[7]   Fast low-rank modifications of the thin singular value decomposition [J].
Brand, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (01) :20-30
[8]   A portable programming interface for performance evaluation on modern processors [J].
Browne, S ;
Dongarra, J ;
Garner, N ;
Ho, G ;
Mucci, P .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2000, 14 (03) :189-204
[9]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[10]   Collective communication: theory, practice, and experience [J].
Chan, Ernie ;
Heimlich, Marcel ;
Purkayastha, Avi ;
van de Geijn, Robert .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2007, 19 (13) :1749-1783