Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250)

被引:7
作者
Yau, Jason
Sharpe, Simon [1 ]
机构
[1] Hosp Sick Children, Mol Struct & Funct Programme, Toronto, ON M5G 1X8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Amyloid fibril; Peptide structure; Solid state nuclear magnetic resonance; Peptide assembly; SOLID-STATE NMR; ANGLE-SPINNING NMR; MOLECULAR-STRUCTURE DETERMINATION; CHEMICAL-SHIFT; ROTATIONAL RESONANCE; XPLOR-NIH; SPECTROSCOPY; SEQUENCE; C-13; IDENTIFICATION;
D O I
10.1016/j.jsb.2012.08.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While the formation of amyloid fibrils from diverse peptide and protein sequences is well established, the molecular determinants of structure and assembly are not well understood. In particular, the relationship between amino acid sequence and the type of internal steric zipper packing adopted in amyloid fibrils has not been established. Here we report the structures of two cytotoxic amyloid peptides derived from the mammalian prion protein, PrP(244-249) and PrP(245-250), determined using solid state NMR. While the amino acid composition of these two hexapeptides is very similar (ISFLIF and SFLIFL), the intermolecular interactions that give rise to the intersheet packing within the fibrils differ significantly. PrP(245-250) adopts a class 1 steric zipper, with parallel sheets stacked in an antiparallel face to face arrangement, stabilized by N- to C-terminal salt bridges. PrP(244-249), by contrast, forms two different intersheet interfaces within amyloid fibrils, with parallel opposing sheets in either a face to face (class 3) or face to back (class 2) arrangement. The fibrils formed by this peptide are primarily stabilized by close packing of the hydrophobic side chains, with contributions from side-chain to backbone hydrogen bonding (class 2 only). Thus, the structures presented here provide new insight into the relationship between amino acid sequence and the types of interactions stabilizing amyloid fibrils. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 48 条
[1]   Supramolecular structural constraints on Alzheimer's β-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance [J].
Antzutkin, ON ;
Leapman, RD ;
Balbach, JJ ;
Tycko, R .
BIOCHEMISTRY, 2002, 41 (51) :15436-15450
[2]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[3]   HETERONUCLEAR DECOUPLING IN ROTATING SOLIDS [J].
BENNETT, AE ;
RIENSTRA, CM ;
AUGER, M ;
LAKSHMI, KV ;
GRIFFIN, RG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16) :6951-6958
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS [J].
CARR, HY ;
PURCELL, EM .
PHYSICAL REVIEW, 1954, 94 (03) :630-638
[6]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[7]   Sequence determinants of amyloid fibril formation [J].
de la Paz, ML ;
Serrano, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :87-92
[8]   Protein misfolding, evolution and disease [J].
Dobson, CM .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (09) :329-332
[9]   PROTEIN SECONDARY STRUCTURES IN WATER FROM 2ND-DERIVATIVE AMIDE-I INFRARED-SPECTRA [J].
DONG, A ;
HUANG, P ;
CAUGHEY, WS .
BIOCHEMISTRY, 1990, 29 (13) :3303-3308
[10]   CROSS-BETA CONFORMATION IN PROTEINS [J].
GEDDES, AJ ;
PARKER, KD ;
ATKINS, EDT ;
BEIGHTON, E .
JOURNAL OF MOLECULAR BIOLOGY, 1968, 32 (02) :343-&