The integer {k}-domination number of circulant graphs

被引:2
作者
Cheng, Yen-Jen [1 ]
Fu, Hung-Lin [2 ]
Liu, Chia-An [3 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 90010, Taiwan
[3] Xiamen Univ, Dept Math, Sepang 43900, Selangor, Malaysia
关键词
Circulant graph; integer {k}-domination number; Euclidean algorithm; integer linear program; DOMINATION; PRODUCTS;
D O I
10.1142/S179383092050055X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple undirected graph. G is a circulant graph defined on V = Z(n) with difference set D subset of {1,2, ..., left perpendicularn/2right perpendicular} provided two vertices i and j in Z(n) are adjacent if and only if min{vertical bar i - j vertical bar, n - vertical bar i - vertical bar} is an element of D. For convenience, we use G(n; D) to denote such a circulant graph. A function f: V(G) -> N boolean OR {0} is an integer {k}-domination function if for each v is an element of V (G), Sigma(u is an element of NG[v] )f(u) >= k.. By considering all {k}-domination functions f, the minimum value of Sigma(v is an element of V(G)) f(v) is the {k}-domination number of G, denoted by gamma k(G). In this paper, we prove that if D = {1, 2, ..., t}, 1 <= t <= n-1/2, then the integer {k}-domination number of G(n; D) is inverted right perpendicularkn/2t+1inverted left perpendicular.
引用
收藏
页数:9
相关论文
共 12 条
  • [1] CYCLIC SCHEDULING VIA INTEGER PROGRAMS WITH CIRCULAR ONES
    BARTHOLDI, JJ
    ORLIN, JB
    RATLIFF, HD
    [J]. OPERATIONS RESEARCH, 1980, 28 (05) : 1074 - 1085
  • [2] Bresar B, 2006, TAIWAN J MATH, V10, P1317
  • [3] Chelvam T. Tamizh, 2012, Advanced Studies in Contemporary Mathematics, V22, P525
  • [4] Domke G.S., 1991, Graph Theory, Combinatorics, and Applications, Volume 1 (Kalamazoo, MI, 1988), P371
  • [5] THEORETICAL IMPROVEMENTS IN ALGORITHMIC EFFICIENCY FOR NETWORK FLOW PROBLEMS
    EDMONDS, J
    KARP, RM
    [J]. JOURNAL OF THE ACM, 1972, 19 (02) : 248 - &
  • [6] THE DOMINATION NUMBER OF GRIDS
    Goncalves, Daniel
    Pinlou, Alexandre
    Rao, Michael
    Thomasse, Stephan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1443 - 1453
  • [7] Toeplitz and Circulant Matrices: A Review
    Gray, Robert M.
    [J]. FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2006, 2 (03): : 155 - 239
  • [8] Haynes T. W., 1998, FUNDAMENTALS DOMINAT
  • [9] On the {k}-domination number of Cartesian products of graphs
    Hou, Xinmin
    Lu, You
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3413 - 3419
  • [10] Graph products and integer domination
    John, Niluk
    Suen, Stephen
    [J]. DISCRETE MATHEMATICS, 2013, 313 (03) : 217 - 224