The Sobolev space of half-differentiable functions and quasisymmetric homeomorphisms

被引:1
作者
Sergeev, Armen [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
Connes quantization; half-differentiable functions; quasiconformal maps;
D O I
10.1515/gmj-2016-0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an interpretation of some classical objects of function theory in terms of Banach algebras of linear operators in a Hilbert space. We are especially interested in quasisymmetric homeomorphisms of the circle. They are boundary values of quasiconformal homeomorphisms of the disk and form a group QS(S-1) with respect to composition. This group acts on the Sobolev space H-0(1/2) (S-1, R) of half-differentiable functions on the circle by reparameterization. We give an interpretation of the group QS(S-1) and the space H-0(1/2) (S-1, R) in terms of noncommutative geometry.
引用
收藏
页码:615 / 622
页数:8
相关论文
共 4 条
[1]  
Ahlfors LarsV., 1966, LECT QUASICONFORMAL, V10
[2]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[3]  
NAG S, 1995, OSAKA J MATH, V32, P1
[4]  
Sergeev A., 2014, EMS SER LECT MATH