LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating

被引:53
作者
Chen, Junchao [1 ,2 ,4 ]
Zhu, Lei [4 ]
Jia, Di [4 ]
Jiang, Xiaobiao [4 ]
Wu, Yongmin [4 ]
Hao, Qingli [5 ]
Xia, Xifeng [5 ]
Ouyang, Yu [5 ]
Peng, Luming [1 ,2 ]
Tang, Weiping [4 ]
Liu, Tao [3 ]
机构
[1] Nanjing Univ, Key Lab Mesoscop Chem MOE, 163 Xianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Chem Life Sci, Sch Chem & Chem Engn, 163 Xianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
[3] Tongji Univ, Dept Chem, Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai 200092, Peoples R China
[4] Shanghai Acad Spaceflight Technol, Shanghai Inst Space Power Sources SISP, State Key Lab Space Power Technol, Shanghai 200245, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Chem Engn, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Lithium ion batteries; Nickel-rich layered cathode; LiNi0.8Co0.15Al0.05O2; Lithium iron phosphate coating; Thermal stability; TRANSITION-METAL OXIDE; ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODES; SURFACE-STRUCTURE; CYCLE STABILITY; ION BATTERIES; LI; NI; OXYGEN; FEPO4;
D O I
10.1016/j.electacta.2019.04.153
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nickel-rich layered cathode materials for lithium ion batteries, e.g., LiNi0.8Co0.15Al0.05O2, have garnered considerable academic and industrial research interests, due to their higher specific energy and lower cost than the widely commercialized LiCoO2. To be more widely deployed in electric vehicles, Ni-rich cathodes with further improved thermal stability and energy densities need to be developed. Herein, we use an industrially viable fusion mixing method to apply LiFePO4 nanoparticles as a coating on LiNi0.8Co0.15Al0.05O2. The LiFePO4 coating helps to reduce the formation of cathode-electrolyte interface layer and the extent of cation mixing in LiNi0.8Co0.15Al0.05O2, which lowers electrochemical polarizations and charge transfer impedance. Compared to pristine LiNi0.8Co0.15Al0.05O2, the LiNi0.8Co0.15Al0.05O2-LiFePO4 composite in a full pouch cell exhibits a higher reversible capacity of 210 mAh.g(-1) and capacity retention (>95% after 100 cycles) when it is charged up to 4.5 V. In situ calorimetric measurements show that the temperature rise in LiNi0.8Co0.15Al0.05O2- LiFePO4 pouch cells at higher rates (>C/2) is lower than in pristine LiNi0.8Co0.15Al0.05O2, by 10 degrees C. The coating strategy in this work can be applied to other nickel-rich and Li-rich cathodes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 66 条
  • [1] Diagnostic examination of thermally abused high-power lithium-ion cells
    Abraham, D. P.
    Roth, E. P.
    Kostecki, R.
    McCarthy, K.
    MacLaren, S.
    Doughty, D. H.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 648 - 657
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [4] Predicting and Extending the Lifetime of Li-Ion Batteries
    Burns, J. C.
    Kassam, Adil
    Sinha, N. N.
    Downie, L. E.
    Solnickova, Lucie
    Way, B. M.
    Dahn, J. R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1451 - A1456
  • [5] Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2
    Cho, Dae-Hyun
    Jo, Chang-Heum
    Cho, Woosuk
    Kim, Young-Jun
    Yashiro, Hitoshi
    Sun, Yang-Kook
    Myung, Seung-Taek
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : A920 - A926
  • [6] Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell
    Cho, J
    Kim, TJ
    Kim, J
    Noh, M
    Park, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) : A1899 - A1904
  • [7] Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell
    Cho, J
    Kim, YJ
    Park, B
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (12) : 3788 - 3791
  • [8] STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE
    DAHN, JR
    VONSACKEN, U
    MICHAL, CA
    [J]. SOLID STATE IONICS, 1990, 44 (1-2) : 87 - 97
  • [9] Relationship between surface chemistry and electrochemical behavior of LiNi1/2Mn1/2O2 positive electrode in a lithium-ion battery
    Dupre, Nicolas
    Martin, Jean-Frederic
    Oliveri, Julie
    Soudan, Patrick
    Yamada, Atsuo
    Kanno, Ryoji
    Guyomard, Dominique
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4791 - 4800
  • [10] Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi0.8Co0.15Al0.05O2
    Faenza, Nicholas V.
    Lebens-Higgins, Zachary W.
    Mukherjee, Pinaki
    Sallis, Shawn
    Pereira, Nathalie
    Badway, Fadwa
    Halajko, Anna
    Ceder, Gerbrand
    Cosandey, Frederic
    Piper, Louis. F. J.
    Amatucci, Glenn G.
    [J]. LANGMUIR, 2017, 33 (37) : 9333 - 9353