LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating

被引:54
作者
Chen, Junchao [1 ,2 ,4 ]
Zhu, Lei [4 ]
Jia, Di [4 ]
Jiang, Xiaobiao [4 ]
Wu, Yongmin [4 ]
Hao, Qingli [5 ]
Xia, Xifeng [5 ]
Ouyang, Yu [5 ]
Peng, Luming [1 ,2 ]
Tang, Weiping [4 ]
Liu, Tao [3 ]
机构
[1] Nanjing Univ, Key Lab Mesoscop Chem MOE, 163 Xianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Chem Life Sci, Sch Chem & Chem Engn, 163 Xianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
[3] Tongji Univ, Dept Chem, Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai 200092, Peoples R China
[4] Shanghai Acad Spaceflight Technol, Shanghai Inst Space Power Sources SISP, State Key Lab Space Power Technol, Shanghai 200245, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Chem Engn, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Lithium ion batteries; Nickel-rich layered cathode; LiNi0.8Co0.15Al0.05O2; Lithium iron phosphate coating; Thermal stability; TRANSITION-METAL OXIDE; ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODES; SURFACE-STRUCTURE; CYCLE STABILITY; ION BATTERIES; LI; NI; OXYGEN; FEPO4;
D O I
10.1016/j.electacta.2019.04.153
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nickel-rich layered cathode materials for lithium ion batteries, e.g., LiNi0.8Co0.15Al0.05O2, have garnered considerable academic and industrial research interests, due to their higher specific energy and lower cost than the widely commercialized LiCoO2. To be more widely deployed in electric vehicles, Ni-rich cathodes with further improved thermal stability and energy densities need to be developed. Herein, we use an industrially viable fusion mixing method to apply LiFePO4 nanoparticles as a coating on LiNi0.8Co0.15Al0.05O2. The LiFePO4 coating helps to reduce the formation of cathode-electrolyte interface layer and the extent of cation mixing in LiNi0.8Co0.15Al0.05O2, which lowers electrochemical polarizations and charge transfer impedance. Compared to pristine LiNi0.8Co0.15Al0.05O2, the LiNi0.8Co0.15Al0.05O2-LiFePO4 composite in a full pouch cell exhibits a higher reversible capacity of 210 mAh.g(-1) and capacity retention (>95% after 100 cycles) when it is charged up to 4.5 V. In situ calorimetric measurements show that the temperature rise in LiNi0.8Co0.15Al0.05O2- LiFePO4 pouch cells at higher rates (>C/2) is lower than in pristine LiNi0.8Co0.15Al0.05O2, by 10 degrees C. The coating strategy in this work can be applied to other nickel-rich and Li-rich cathodes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 66 条
[1]   Diagnostic examination of thermally abused high-power lithium-ion cells [J].
Abraham, D. P. ;
Roth, E. P. ;
Kostecki, R. ;
McCarthy, K. ;
MacLaren, S. ;
Doughty, D. H. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :648-657
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Predicting and Extending the Lifetime of Li-Ion Batteries [J].
Burns, J. C. ;
Kassam, Adil ;
Sinha, N. N. ;
Downie, L. E. ;
Solnickova, Lucie ;
Way, B. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1451-A1456
[5]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[6]   Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell [J].
Cho, J ;
Kim, TJ ;
Kim, J ;
Noh, M ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1899-A1904
[7]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791
[8]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97
[9]   Relationship between surface chemistry and electrochemical behavior of LiNi1/2Mn1/2O2 positive electrode in a lithium-ion battery [J].
Dupre, Nicolas ;
Martin, Jean-Frederic ;
Oliveri, Julie ;
Soudan, Patrick ;
Yamada, Atsuo ;
Kanno, Ryoji ;
Guyomard, Dominique .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4791-4800
[10]   Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi0.8Co0.15Al0.05O2 [J].
Faenza, Nicholas V. ;
Lebens-Higgins, Zachary W. ;
Mukherjee, Pinaki ;
Sallis, Shawn ;
Pereira, Nathalie ;
Badway, Fadwa ;
Halajko, Anna ;
Ceder, Gerbrand ;
Cosandey, Frederic ;
Piper, Louis. F. J. ;
Amatucci, Glenn G. .
LANGMUIR, 2017, 33 (37) :9333-9353