EXTREMAL RESULTS FOR BERGE HYPERGRAPHS

被引:63
作者
Gerbner, Daniel [1 ]
Palmer, Cory [2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
关键词
Berge hypergraphs; extremal graphs; extremal hypergraphs; TURAN PROBLEMS; 3-UNIFORM HYPERGRAPHS; NO CYCLE; LENGTH; THEOREM; TREES; PATHS;
D O I
10.1137/16M1066191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E(G) and V(G) denote the edge set and vertex set of a (hyper) graph G. Let G be a graph and H be a hypergraph. We say that a hypergraph H is a Berge-G if there is a bijection f : E(G) -> E(H) such that for each e is an element of E(G) we have e subset of f(e). This generalizes the established definitions of "Berge path" and "Berge cycle" to general graphs. For a fixed graph G we examine the maximum possible size of a hypergraph with no Berge-G as a subhypergraph. In the present paper we prove general bounds for this maximum when G is an arbitrary graph. We also consider the specific case when G is a complete bipartite graph and prove an analogue of the Kovari-Sos-Turan theorem. In case G is C-4, we improve the bounds given by Gyori and Lemons
引用
收藏
页码:2314 / 2327
页数:14
相关论文
共 23 条
  • [1] Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints
    Alon, N
    Jiang, T
    Miller, Z
    Pritikin, D
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (04) : 409 - 433
  • [2] AN ANTI-RAMSEY THEOREM
    BABAI, L
    [J]. GRAPHS AND COMBINATORICS, 1985, 1 (01) : 23 - 28
  • [3] Pentagons vs. triangles
    Bollobas, Bela
    Gyori, Ervin
    [J]. DISCRETE MATHEMATICS, 2008, 308 (19) : 4332 - 4336
  • [4] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [5] Cho S., ANTIRAMSEY PROBLEM C
  • [6] Davoodi A., ERDOS GALLAI TYPE TH
  • [7] Erdos P., 1983, TEUBNER TEXTE MATH, V59, P54
  • [8] EXACT SOLUTION OF THE HYPERGRAPH TURAN PROBLEM FOR K-UNIFORM LINEAR PATHS
    Fueredi, Zoltan
    Jiang, Tao
    Seiver, Robert
    [J]. COMBINATORICA, 2014, 34 (03) : 299 - 322
  • [9] Hypergraph Turan numbers of linear cycles
    Fueredi, Zoltan
    Jiang, Tao
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 123 (01) : 252 - 270
  • [10] Linear trees in uniform hypergraphs
    Fueredi, Zoltan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 264 - 272