A new approach to the Orlicz Brunn-Minkowski inequality

被引:5
作者
Feng, Yibin [1 ]
He, Binwu [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Orlicz addition; Orlicz Brunn-Minkowski inequality; Shadow system; FIREY THEORY;
D O I
10.1016/j.aam.2019.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approach to the recently established Orlicz Brunn-Minkowski inequality which is due to Xi, Jin and Leng and is stronger than the classical and L-p Brunn-Minkowski inequalities. Our approach is based on the shadow system and does not rely on the Steiner symmetrization. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 156
页数:13
相关论文
共 13 条
[1]   The Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
ADVANCES IN MATHEMATICS, 2002, 167 (01) :128-141
[2]  
Firey WJ, 1962, MATH SCAND, V10, P17
[3]  
Gardner R., 2006, Geometric Tomography
[4]  
Gardner RJ, 2014, J DIFFER GEOM, V97, P427
[5]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[6]   The Brunn-Minkowski-Firey theory .2. Affine and geominimal surface areas [J].
Lutwak, E .
ADVANCES IN MATHEMATICS, 1996, 118 (02) :244-294
[7]  
LUTWAK E, 1993, J DIFFER GEOM, V38, P131
[8]  
Lutwak E, 2010, J DIFFER GEOM, V84, P365
[9]   Orlicz projection bodies [J].
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2010, 223 (01) :220-242
[10]  
Rogers CA., 1958, Mathematika, V5, P93, DOI [10.1112/S0025579300001418, DOI 10.1112/S0025579300001418]