Superintegrable Extensions of Superintegrable Systems

被引:11
作者
Chanu, Claudia M. [1 ]
Degiovanni, Luca [1 ]
Rastelli, Giovanni
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
superintegrable Hamiltonian systems; polynomial first integrals;
D O I
10.3842/SIGMA.2012.070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E-2 and S-2 and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems.
引用
收藏
页数:12
相关论文
共 10 条
  • [1] Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization
    Chanu, C.
    Degiovanni, L.
    Rastelli, G.
    [J]. 7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [2] First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
    Chanu, Claudia
    Degiovanni, Luca
    Rastelli, Giovanni
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [3] Superintegrable three-body systems on the line
    Chanu, Claudia
    Degiovanni, Luca
    Rastelli, Giovanni
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (11)
  • [4] On the problem of degeneracy in quantum mechanics
    Jauch, JM
    Hill, EL
    [J]. PHYSICAL REVIEW, 1940, 57 (07): : 641 - 645
  • [5] Kalnins E.G., 2012, COMMUNICATION 0220
  • [6] Completeness of superintegrability in two-dimensional constant-curvature spaces
    Kalnins, EG
    Kress, JM
    Pogosyan, GS
    Miller, W
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (22): : 4705 - 4720
  • [7] Tools for Verifying Classical and Quantum Superintegrability
    Kalnins, Ernest G.
    Kress, Jonathan M.
    Miller, Willard, Jr.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [8] Maciejewski A.J., 2010, J PHYS A, V43
  • [9] Reduction of superintegrable systems: The anisotropic harmonic oscillator
    Rodriguez, Miguel A.
    Tempesta, Piergiulio
    Winternitz, Pavel
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [10] An infinite family of solvable and integrable quantum systems on a plane
    Tremblay, Frederick
    Turbiner, Alexander V.
    Winternitz, Pavel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)