An efficient nonlinear solution method for non-equilibrium radiation diffusion

被引:76
作者
Knoll, DA [1 ]
Rider, WJ [1 ]
Olson, GL [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
关键词
radiation diffusion; non-equilibrium; Newton-Krylov methods;
D O I
10.1016/S0022-4073(98)00132-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new nonlinear solution method is developed and applied to a non-equilibrium radiation diffusion problem. With this new method, Newton-like super-linear convergence is achieved in the nonlinear iteration, without the complexity of forming or inverting the Jacobian from a standard Newton method. The method is a unique combination of an outer Newton-based iteration and and inner conjugate gradient-like (Krylov) iteration. The effects of the Jacobian are probed only through approximate matrix-vector products required in the conjugate gradient-like iteration. The methodology behind the Jacobian-free Newton-Krylov method is given in detail. It is demonstrated that a simple, successive substitution, linearization produces an effective preconditioning matrix for the Krylov method. The efficiencies of different methods are compared and the benefits of converging the nonlinearities within a time step are demonstrated. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条
[31]   Non-Equilibrium Statistical Mechanics of Turbulence [J].
Ruelle, David .
JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (02) :205-218
[32]   Thermochemical Non-Equilibrium in Thermal Plasmas [J].
Bultel, Arnaud ;
Morel, Vincent ;
Annaloro, Julien .
ATOMS, 2019, 7 (01)
[33]   Brownian particle in non-equilibrium plasma [J].
Lev, B. I. ;
Tymchyshyn, V. B. ;
Zagorodny, A. G. .
CONDENSED MATTER PHYSICS, 2009, 12 (04) :593-602
[34]   Approach to a non-equilibrium steady state [J].
Plasecki, Jaroslaw ;
Soto, Rodrigo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) :379-386
[35]   Non-Equilibrium Statistical Mechanics of Turbulence [J].
David Ruelle .
Journal of Statistical Physics, 2014, 157 :205-218
[36]   On metallurgical processes and non-equilibrium thermodynamics [J].
Wei, JH ;
Hu, HT .
STEEL RESEARCH INTERNATIONAL, 2004, 75 (07) :449-454
[37]   Non-equilibrium phenomena in thermal plasmas [J].
Cressault Y. ;
Teulet Ph. ;
Baumann X. ;
Gleizes A. .
Cressault, Y. (cressault@laplace.univ-tlse.fr), 1600, IOP Publishing Ltd (02)
[38]   Homoenergetic solutions for the Rayleigh-Boltzmann equation: existence of a stationary non-equilibrium solution [J].
Miele, Nicola ;
Nota, Alessia ;
Velazquez, Juan J. L. .
JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (07)
[39]   Multi-group maximum entropy method: Modeling translational non-equilibrium [J].
Chang, Anthony ;
Singh, Narendra ;
Panesi, Marco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 538
[40]   Quasi-equilibrium and non-equilibrium adsorption in heterogeneous photocatalysis [J].
Serrano, Benito ;
Salaices, Miguel ;
Ortiz, Aaron ;
De Lasa, Hugo I. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (18-20) :5160-5166