Fatal Heyting Algebras and Forcing Persistent Sentences

被引:6
作者
Esakia, Leo
Lowe, Benedikt [1 ,2 ]
机构
[1] Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, Netherlands
[2] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
关键词
forcing; intermediate logics; Heyting algebra;
D O I
10.1007/s11225-012-9393-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hamkins and Lowe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra H-ZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 13 条
[1]  
Adamek J., 2011, ALGEBRAIC THEORIES C, V184
[2]   The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem [J].
Bezhanishvili, Guram .
ANNALS OF PURE AND APPLIED LOGIC, 2009, 161 (03) :253-267
[3]  
Chagrov A., 1997, Oxford Logic Guides, V35
[4]  
Dummett M., 1959, Z MATH LOGIK GRUNDLA, V3, P250
[5]  
Godel K., 1958, Dialectica, V12, P280, DOI 10.1111/j.1746-8361.1958.tb01464.x
[6]  
Hamkins JD, 2008, T AM MATH SOC, V360, P1793
[7]  
Johnstone P. T., 1982, Stone Spaces, V3
[8]  
Kiss E. W., 1983, Studia Sci. Math. Hungar., V18, P79
[9]   Cardinal spaces and topological representations of bimodal logics [J].
Loewe, Benedikt ;
Sarenac, Darko .
LOGIC JOURNAL OF THE IGPL, 2005, 13 (03) :301-306
[10]  
Maksimova LL., 1977, Algebra Logic, V16, P427, DOI [DOI 10.1007/BF01670006, 10.1007/bf01670006]