Hardware Accelerator for Boosting Convolution Computation in Image Classification Applications

被引:0
作者
Chang, Meng-Chou [1 ]
Pan, Ze-Gang [1 ]
Chen, Jyun-Liang [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Elect Engn, Changhua 50074, Taiwan
来源
2017 IEEE 6TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE) | 2017年
关键词
Convolutional neural network; image classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In a convolutional neural network (CNN), convolution calculation can account for about 90% of the total processing work. This paper presents the design of a convolution hardware accelerator (CHA) which can support efficient matrix multiplication to speed up the convolution calculation. In our experiment, when a RISC-V Rocket processor is used to simulate the operation of a CNN for image classification, it can achieve a performance speedup of 30.82 with the help of the convolution hardware accelerator (CHA).
引用
收藏
页数:2
相关论文
共 3 条
  • [1] Krizhevsky Alex, THE CIFAR DATASET
  • [2] Redmon Joseph, 2013, DARKNET OPEN SOURCE
  • [3] DLAU: A Scalable Deep Learning Accelerator Unit on FPGA
    Wang, Chao
    Gong, Lei
    Yu, Qi
    Li, Xi
    Xie, Yuan
    Zhou, Xuehai
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2017, 36 (03) : 513 - 517