Existence of Periodic Solutions for Second Order Hamiltonian System

被引:0
作者
Li Xiao [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Second order Hamiltonian systems; periodic solution; critical point; saddle point theorem; P-LAPLACIAN SYSTEM; P(T)-LAPLACIAN SYSTEMS; NONLINEARITIES; MULTIPLICITY; EQUATIONS; POINT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some existence theorems are obtained for periodic solutions of second order Hamiltonian system by using the minimax principle. Our results improve those in some known literatures.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 1989, APPL MATH SCI
[2]  
[Anonymous], 1987, ACAD ROY BELG B S
[3]   SOLVABILITY OF SEMILINEAR GRADIENT OPERATOR EQUATIONS [J].
BERGER, MS ;
SCHECHTER, M .
ADVANCES IN MATHEMATICS, 1977, 25 (02) :97-132
[4]   Periodic solutions to differential systems with unbounded or periodic nonlinearities [J].
Feng, Jian-Xia ;
Han, Zhi-Qing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1264-1278
[5]   Periodic solutions of second order discrete convex systems involving the p-Laplacian [J].
He, Tieshan ;
Chen, Wenge .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) :124-132
[6]   Existence of critical point for abstract resonant problems with unbounded nonlinearities and applications to differential equations [J].
Li, Qingdong ;
Han, Zhi-Qing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (08) :1654-1668
[7]  
Luo ZM, 2012, B MALAYS MATH SCI SO, V35, P373
[8]   CRITICAL-POINTS OF CONVEX PERTURBATIONS OF SOME INDEFINITE QUADRATIC-FORMS AND SEMILINEAR BOUNDARY-VALUE-PROBLEMS AT RESONANCE [J].
MAWHIN, J ;
WILLEM, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (06) :431-453
[9]   ON SUB-HARMONIC SOLUTIONS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :609-633
[10]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT