An Approach to Fractional Programming via DC Optimization

被引:3
作者
Gruzdeva, Tatiana [1 ]
Strekalovskiy, Alexander [1 ]
机构
[1] SB RAS, Matrosov Inst Syst Dynam & Control Theory, Lermontov Str 134, Irkutsk, Russia
来源
NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016) | 2016年 / 1776卷
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/1.4965374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address the development of efficient global search methods for a sum of ratios (i.e. a fractional programming) problem. This is, in general, a nonconvex problem (with numerous local extremum) which belongs to a class of global optimization problems. We proved the reduction theorem for the fractional programming problem with the d.c. functions and one equation with the vector parameter that satisfy the nonnegativity assumption. This theorem allows a justified use of the Dinkelbach's approach to solving fractional programming problems with the goal function given by d.c. functions.
引用
收藏
页数:4
相关论文
共 8 条
[1]   Minimizing the sum of many rational functions [J].
Bugarin F. ;
Henrion D. ;
Lasserre J.B. .
Mathematical Programming Computation, 2016, 8 (01) :83-111
[2]  
Dinkelbach W., 1967, Manage. Sci., V13, P492
[3]  
Frenk J.B.G, 2002, SERIES NONCONVEX OPT, V76, P335
[4]  
Rockafellar R. T., 1970, CONVEX ANAL, V36
[5]  
Strekalovsky A.S., 2014, Optimization in Science and Engineering, P465, DOI [10.1007/978-1-4939-0808-0_23, DOI 10.1007/978-1-4939-0808-0_23]
[6]   On a local and global search involved in nonconvex optimization problems [J].
Strekalovsky, AS ;
Yakovleva, TV .
AUTOMATION AND REMOTE CONTROL, 2004, 65 (03) :375-387
[7]  
STREKALOVSKY AS, 2003, COMP MATH MATH PHYS, V43, P380
[8]  
Yakovleva, 2001, SIB ZH VYCHISL MAT, V4, P185